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The TYPES meeting series has always been my favourite among all conferences
and I am honoured that I was given the opportunity to organise TYPES 2021. It was,
unfortunately, during the years 2020 and 2021 not possible to hold any physical con-
ferences. Ugo and Stefano had done great work in the preparation of TYPES 2020,
but the sudden disruption made it impossible to hold the meeting. This year, we were
able to prepare ourselves to hold TYPES 2021 as a virtual meeting. Even though this
is far from ideal for a meeting that is centred around collaboration, it was still very
enjoyable and we had many very high quality submissions, as this book of abstracts
attests. I wish to thank all authors and participants for making TYPES 2021 such a
rich and enjoyable meeting, despite the circumstances. Enjoy the abstracts!

Henning Basold
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Invited Talks
Stephanie Balzer – Session Logical Relations for Noninterference

In this talk I introduce the audience to linear session types through the lens of non-
interference. Session types, as the types of message-passing concurrency, naturally
capture what information is learned by the exchange of messages, facilitating the
development of a flow-sensitive information flow control (IFC) type system guaran-
teeing noninterference. Noninterference ensures that an observer (adversary) cannot
infer any secrets from made observations. I will explain the key ideas underlying the
development of the IFC type system as well as the construction of the logical rela-
tion conceived to prove noninterference. The type system is based on intuitionistic
linear logic and enriched with possible worlds to impose invariants on run-time con-
figurations of processes, leading to a stratification in line with the security lattice.
The logical relation generalizes existing developments for session-typed languages to
open configuration to allow for a more subtle statement of program equivalence.

Ulrik Buchholtz – Genuine pairs and the trouble with triples in homotopy
type theory

What is an unordered pair of groups, or of categories, or of types? In homotopy type
theory, the naive answer is a pair of a two-element type K and a function from K
to whatever we’re taking pairs of. This definition has the downside that the type of
unordered pairs in a set is no longer a set. For example, the unordered pairs in the
unit type is the infinite dimensional real projective space.

I’ll explain how to define genuine unordered pairs using ideas from equivariant
homotopy theory and prove that the genuine unordered pairs in a set is still a set.
Then I’ll define genuine unordered triples and relate my troubles with them. Finally,
I’ll explain why genuine multisets of arbitrary cardinality are really difficult.

Sara Negri – On the constructive content of infinitary classical theories

Notable parts of algebra and geometry can be formalized as coherent theories over
first-order logic. Albeit wide, the class of coherent theories misses certain axioms in
algebra such as the axioms of torsion abelian groups, Archimedean ordered fields, or
the notion of transitive closure used in the theory of connected graphs and in the
modelling of epistemic social notions such as common knowledge. All those exam-
ples can however be axiomatized by means of geometric axioms, a generalization of
coherent axioms that includes infinitary disjunctions. We give a constructive proof of
cut elimination for infinitary classical and intuitionistic sequent calculi for geometric
theories. We then exploit their uniformity to obtain, purely by methods of structural
proof theory, Glivenko-style conservativity results leading to the infinitary general-
ization of the first-order Barr theorem as a special case.

(Includes joint work with Giulio Fellin and Eugenio Orlandelli)
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Pierre-Marie Pédrot – All your base categories are belong to us: A syntactic
model of presheaves in type theory

Presheaves are a staple categorical structure, which naturally arises in a wide variety
of situations. In the realm of logic, they are often used as a model factory. Indeed,
presheaves over some base category will result in a topos, whose contents can be
fine-tuned by carefully picking the base category. As computer scientists, though,
we have learnt that there are even better logical systems than toposes: dependent
type theories! Through the Curry-Howard mirror, they are also full-blown functional
programming languages that actually compute.

This begs the following question: is it possible to build the type-theoretic equiv-
alent of presheaves, while retaining the good computational properties of our de-
pendent programming languages? We will see that strikingly enough, presheaves
can already be presented as computational objects to some extent, except for the an-
noying fact that they do not obey the right conversion rules! A proper account of
type-theoretic presheaves will require a coming-of-age journey through the world of
effectful program semantics, using fine and modern tools such as call-by-push-value,
dependent parametricity and strict equality. In the end, we will formulate an alter-
native presentation of presheaves in type theory, but which is still equivalent to its
standard categorical counterpart when viewed from the static world of sets. As an
application, we will use them to extend dependent type theory with new effective
logical principles.
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On Model-Theoretic Strong Normalization for

Truth-Table Natural Deduction

Andreas Abel

Department of Computer Science and Engineering, Gothenburg University

Geuvers and Hurkens [2017a] introduced a method to derive natural deduction proof rules
from truth tables of logical connectives.

A B A→ B
0 0 1
0 1 1
1 0 0
1 1 1

For instance, consider the truth table for implication. For each line
where A → B holds, e.g., the second line, an introduction rule is created
where 0-valued (or negative) operands A become premises Γ.A ` A → B
and 1-valued (or positive) operands B become premises Γ ` B. Lines like
the third where A → B is false become eliminations with a conclusion
Γ ` C for an arbitrary formula C. The premises of this eliminations are
a premise Γ ` A for each 1-valued operand A, and a premise Γ.B ` C
for each 0-valued operand B. This yields the following four rules for judgements Γ ` A and
Γ | A ` C, which we complement by the standard administrative rules for natural deduction in
spine form:1

in00
→

Γ.A ` A→ B Γ.B ` A→ B

Γ ` A→ B
in01
→

Γ.A ` A→ B Γ ` B
Γ ` A→ B

el10
→

Γ ` A Γ.B ` C
Γ | A→ B ` C

in11
→

Γ ` A Γ ` B
Γ ` A→ B

var
A ∈ Γ

Γ ` A
elim

Γ ` A Γ | A ` C
Γ ` C

id
Γ | A ` A

comp
Γ | A ` B Γ | B ` C

Γ | A ` C

The rule names serve as the constructors for proof terms a, b, c, f, t, u : Γ ` A. Exceptions
are elim and comp which we write infix as centered dot f · ~E and E · ~E, and var which we
omit, treating an index x : A ∈ Γ directly as proof term. Further, we consider eliminations
~E : Γ | A ` C up to associativity of composition with identity id. Substitution of the last
hypothesis in t : Γ.A ` C by a : Γ ` A is written t[a] : Γ ` C.

Proof terms allow us to express the reduction rules concisely. A detour or β-reduction can
fire on the elimination I · E of an introduction I.

• Either, a positive premise (1) of the introduction matches a negative premise (0) of the
elimination. E.g., the second premise of the elimination el10

→ is negative, and it can react
with the positive second premise of in01

→ and in11
→:

in 1
→( , b) · el10

→( , t) 7→β t[b]

1Geuvers and Hurkens describe the rules in conventional natural deduction format where the elimination rule
has the eliminatee as premise. In contrast, we introduce a separate syntactic class E : Γ | A ` C of eliminations
that is often associated with sequent calculus. However, with its focus on eliminatee A this is rather a variant of
natural deduction where subsequent eliminations can be grouped together. For us, this is more of a convenience
of notation and presentation than a deviation from Geuvers and Hurkens. Our arguments all hold also with the
original natural deduction rules.



Strong Normalization for Truth-Table Natural Deduction A. Abel

• Or a negative premise of the introduction, e.g., in00
→ or in01

→, reacts with a matching positive
premise of the elimination, el10

→. In this case, the elimination persists, but the introduction
is replaced with an instantiation of its respective negative premise.

in0
→(u, ) · el10

→(a, t) 7→β u[a] · el10
→(a, t)

Reduction is inherently non-confluent: the reducts of in01
→(u, b) · el10

→(a, t) form the critical pair
of t[b] and u[a] · el10

→(a, t) which can in general not be joined.
Permutation or π-reductions allow us to combine sequences of eliminations E1 · E2 into a

single elimination E1{E2}, permuting elimination E2 into the negative branches of E1. For
implication A→ B, we have el10

→(a, u){E2} = el10
→(a, u ·E2↑) where ↑ lifts E2 : Γ | C → C ′ ` D

under the extra hypothesis B of u : Γ.B ` C → C ′.
Geuvers, van der Giessen, and Hurkens [2019] prove strong normalization (SN) of βπ-

reduction by a translation to simply-typed parallel lambda-calculus. In a forth-coming article
[Abel, 2021] in the TYPES 2020 post-proceedings I obtain this result by adapting established
model-theoretic SN proofs.

In the adaptation of the (bi)orthogonality method I model types A as sets A of eliminations
~E of type A containing id. Terms a of type A are then shown to be orthgonal to A, where a ⊥ A
means that a · ~E is SN for all ~E ∈ A. With notation ~E ∈ X [A] whenever ~E : Γ.A | X ` C and
~E[a] ∈ X for all a ⊥ A, we can construct A → B as the greatest fixpoint νF⊥ of the pointwise
orthogonal F⊥ of the operator

F(X )Γ = {in00
→(t, u), in01

→(t, b), in11
→(a, b) | a ⊥ AΓ, b ⊥ BΓ, t ⊥ X [A]Γ, u ⊥ X [B]Γ}.

While F⊥ is monotone, it is not strictly positive, so we cannot directly implement this con-
struction in Agda or predicative Coq, that only support strictly positive coinductive types.

An adaptation of Tait’s saturated sets method however allows for a predicate proof using
strictly positive inductive types only. The saturation condition for a set C of SN terms is a mix
of conditions presented by Geuvers and Hurkens [2017b, 2020] and Matthes [2005]:

1. C contains any SN weak head β-redex whose reducts it already contains.
2. C contains the variables x.
3. C contains a SN neutral x · el10

→(a, u) whenever it contains u.

4. C contains neutral x · E1 · E2 · ~E whenever it contains its π-reduct x · E1{E2} · ~E and

y · E2 · ~E for some variable y.

The closure operator derived from these conditions is strictly positive, so we can define semantics
types likeA → B in a predicative way, by their introductions and the inductive closure generated
from the above conditions.

Having explained the interpretation of types A as SN term set A, the rest of the SN proof
is routine. For pedagogical purposes, we have only spelled out rules, reductions, and semantics
for implication, which is almost the general case—with the exception that it has only one
elimination. Rules and reductions for other connectives can be obtained according to the
described schema, and the construction of their semantics can be mechanically derived from
the inference rules.

Acknowledgments. Thanks to the anonymous referees for their feedback on this abstract.
This work was supported by Vetenskapsr̊adet under Grant No. 2019-04216 Model Dependent
Type Theory.
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SSProve: A Foundational Framework
for Modular Cryptographic Proofs in Coq

Carmine Abate1, Philipp G. Haselwarter2, Exequiel Rivas3, Antoine Van Muylder4,
Théo Winterhalter1, Cătălin Hrit,cu1, Kenji Maillard5, and Bas Spitters2

1MPI-SP 2Aarhus University 3Inria Paris 4Vrije Universiteit Brussel 5Inria Rennes

Abstract

State-separating proofs (SSP) is a recent methodology for structuring game-based cryptographic
proofs in a modular way. While very promising, this methodology was previously not fully formalized
and came with little tool support. We address this by introducing SSProve, the �rst general veri�cation
framework for machine-checked state-separating proofs. SSProve combines high-level modular proofs
about composed protocols, as proposed in SSP, with a probabilistic relational program logic for formal-
izing the lower-level details, which together enable constructing fully machine-checked crypto proofs
in the Coq proof assistant. Moreover, SSProve is itself formalized in Coq, including the algebraic laws
of SSP, the soundness of the program logic, and the connection between these two veri�cation styles.

Note. This work has been accepted at the CSF’21 conference. A full length preprint is available on
eprint at https://eprint.iacr.org/2021/397.

State Separating Proofs. Cryptographic proofs can be challenging to make fully precise and to rig-
orously check. This has caused a “crisis of rigor” [7] in cryptography that Shoup [25], Bellare and Rog-
away [7], Halevi [15], and others, proposed to address by systematically structuring proofs as sequences of
games. This game-based proof methodology is not only ubiquitous in provable cryptography nowadays,
but also amenable to full machine-checking in proof assistants such as Coq [2, 20] and Isabelle/HOL [6].
It has also led to the development of specialized proof assistants [4] and automated veri�cation tools for
crypto proofs [3, 5, 10]. There are two key ideas behind these tools: (i) formally representing games and
the adversaries against them as code in a probabilistic programming language, and (ii) using program
veri�cation techniques to conduct all game transformation steps in a machine-checked manner.

For a long time however, game-based proofs have lacked modularity, which made them hard to scale
to large, composed protocols such as TLS [23] or the upcoming MLS [1]. To address this issue, Brzuska
et al. [11] have recently introduced state-separating proofs (SSP), a methodology for modular game-based
proofs, inspired by the paper proofs in the miTLS project [8, 9, 14], by prior compositional cryptography
frameworks [12, 18], and by process algebras [19]. In the SSP methodology, the code of cryptographic
games is split into packages, which are modules made up of procedures sharing state. Packages can call
each other’s procedures (also known as oracles) and can operate on their own state, but cannot directly
access other packages’ state. Packages have natural notions of sequential and parallel composition that
satisfy simple algebraic laws, such as associativity of sequential composition. This law is used to de�ne
cryptographic reductions not only in SSP, but also in the The Joy of Cryptography textbook [24], which
teaches crypto proofs in a style very similar to SSP.

While the SSP methodology is very promising, the lack of a complete formalization makes it cur-
rently only usable for informal paper proofs, not for machine-checked ones. The SSP paper [11] de�nes
package composition and the syntax of a cryptographic pseudocode language for games and adversaries,
but the semantics of this language is not formally de�ned, and the meaning of their assert operator
is not even clear, given the probabilistic setting. Moreover, while SSP provides a good way to structure
proofs at the high-level, using algebraic laws such as associativity, the low-level details of such proofs are
usually treated very casually on paper. Yet none of the existing crypto veri�cation tools that could help
machine-check these low-level details supports the high-level part of SSP proofs: equational reasoning
about composed packages (i.e., modules) is either not possible at all [2, 15, 20, 26], or does not exactly
match the SSP package abstraction [4, 16].

https://eprint.iacr.org/2021/397
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Contributions. The main contribution of this work is to introduce SSProve, the �rst general veri�-
cation framework for machine-checked state-separating proofs. SSProve brings together two di�erent
proof styles into a single uni�ed framework: (1) high-level proofs are modular, done by reasoning equa-
tionally about composed packages, as proposed in SSP [11]; (2) low-level details are formally proved in a
probabilistic relational program logic [2, 4, 20]. Importantly, we show a formal connection between these
two proof styles.

SSProve is, moreover, a foundational framework, fully formalized itself in Coq. For this we de�ne the
syntax of crypto pseudocode in terms of a free monad, in which external calls are represented as algebraic
operations [21]. This gives us a principled way to de�ne sequential composition of packages based on
an algebraic e�ect handler [22] and to give machine-checked proofs of the SSP package laws [11], some
of which were treated informally on paper. We moreover make precise the minimal state-separation
requirements between adversaries and the games with which they are composed—this reduces the proof
burden and allows us to prove more meaningful security results, that do not require the adversary’s state
to be disjoint from intermediate games in the proof.

Beyond just syntax, we also give a denotational semantics to crypto code in terms of stateful proba-
bilistic functions that can signal assertion failures by sampling from the empty probability subdistribution.
Finally, we prove the soundness of a probabilistic relational program logic for relating pairs of crypto code
fragments.

For this soundness proof we build a semantic model based on relational weakest-precondition speci-
�cations. Our model is modular with respect to the considered side-e�ects (currently probabilities, state,
and assertion failures). To obtain it, we follow a general recipe by Maillard et al. [17], who recently
proposed to characterize such semantic models as relative monad morphisms, mapping two monadic
computations to their canonical relational speci�cation. This allows us to �rst de�ne a relative monad
morphism for probabilistic, potentially failing computations and then to extend this to state by simply
applying a relative monad transformer. Working out this instance of Maillard et al.’s [17] recipe involved
formalizing various non-standard categorical constructs in Coq, in an order-enriched context: lax func-
tors, lax natural transformations, left relative adjunctions, lax morphisms between such adjunctions, state
transformations of such adjunctions, etc. This formalization is of independent interest and should also
allow us to more easily add extra side-e�ects and F?-style sub-e�ecting [26] to SSProve in the future.

Case studies. To test our methodology, we have formalized several security proofs in SSProve. The
�rst example looks at a symmetric encryption scheme built out of a pseudo-random function. The sec-
ond example proves security of ElGamal, a popular asymmetric encryption scheme. Finally, we tackle
the more challenging KEM-DEM example of [11], showing that composing a secure key-encapsulation
mechanism (KEM) with a data encapsulation mechanism (DEM) results in a secure public-key encryption
mechanism, following [13].

The full formalization of SSProve and of the examples mentioned above (circa 20k lines of Coq code
including comments) is available at https://github.com/SSProve/ssprove under the MIT
open source license.

Acknowledgements. We are grateful to Arthur Azevedo de Amorim, Théo Laurent, Nikolaj Sidorenco,
and Ramkumar Ramachandra for their technical support and for participating in stimulating discussions.
This work was in part supported by the European Research Council under ERC Starting Grant SECOMP
(715753), by AFOSR grantHomotopy type theory and probabilistic computation (12595060), and by the Con-
cordium Blockchain Research Center at Aarhus University. Antoine Van Muylder holds a PhD Fellowship
from the Research Foundation – Flanders (FWO).

2

https://github.com/SSProve/ssprove
https://erc.europa.eu


SSProve: Modular Crypto Proofs in Coq Abate, Haselwarter, Rivas, Van Muylder, Winterhalter, Hrit,cu, Maillard, Spitters

References
[1] R. Barnes, B. Beurdouche, J. Millican, E. Omara, K. Cohn-Gordon, and R. Robert. The messaging

layer security (MLS) protocol. IETF Draft, 2020.

[2] G. Barthe, B. Grégoire, and S. Zanella-Béguelin. Formal certi�cation of code-based cryptographic
proofs. POPL, 2009.

[3] G. Barthe, J. M. Crespo, B. Grégoire, C. Kunz, Y. Lakhnech, B. Schmidt, and S. Zanella Béguelin. Fully
automated analysis of padding-based encryption in the computational model. In CCS’13. 2013.

[4] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P. Strub. EasyCrypt: A tutorial. In
Foundations of Security Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures. 2013.

[5] G. Barthe, B. Grégoire, and B. Schmidt. Automated proofs of pairing-based cryptography. In CCS’15.
2015.

[6] D. A. Basin, A. Lochbihler, and S. R. Se�dgar. CryptHOL: Game-based proofs in higher-order logic.
J. Cryptol., 33(2), 2020.

[7] M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption.
IACR Cryptol. ePrint Arch., page 331, 2004.

[8] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P. Strub, and S. Zanella Béguelin. Proving the
TLS handshake secure (as it is). In CRYPTO’14. 2014.

[9] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Pan, J. Protzenko, A. Rastogi,
N. Swamy, S. Zanella Béguelin, and J. K. Zinzindohoue. Implementing and proving the TLS 1.3
record layer. IEEE S&P, 2017.

[10] B. Blanchet. A computationally sound mechanized prover for security protocols. In IEEE S&P. 2006.

[11] C. Brzuska, A. Delignat-Lavaud, C. Fournet, K. Kohbrok, and M. Kohlweiss. State separation for
code-based game-playing proofs. In ASIACRYPT. 2018.

[12] R. Canetti. Universally composable security. J. ACM, 67(5), 2020.

[13] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. SIAM J. Comput., 33(1), 2003.

[14] C. Fournet, M. Kohlweiss, and P. Strub. Modular code-based cryptographic veri�cation. CCS. 2011.

[15] S. Halevi. A plausible approach to computer-aided cryptographic proofs. IACR Cryptol. ePrint Arch.,
page 181, 2005.

[16] A. Lochbihler, S. R. Se�dgar, D. A. Basin, and U. Maurer. Formalizing constructive cryptography
using CryptHOL. In CSF. 2019.

[17] K. Maillard, C. Hriţcu, E. Rivas, and A. V. Muylder. The next 700 relational program logics. Proc.
ACM Program. Lang., 4(POPL), 2020.

[18] U. Maurer and R. Renner. Abstract cryptography. In Innovations in Computer Science - ICS’11. 2011.

[19] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Inf. Comput., 100(1), 1992.

[20] A. Petcher and G. Morrisett. The foundational cryptography framework. POST . 2015.

[21] G. D. Plotkin and J. Power. Algebraic operations and generic e�ects. Applied Categorical Structures,
11(1), 2003.

[22] G. D. Plotkin and M. Pretnar. Handlers of algebraic e�ects. ESOP . 2009.

3

https://tools.ietf.org/html/draft-ietf-mls-protocol-11
https://tools.ietf.org/html/draft-ietf-mls-protocol-11
http://dx.doi.org/10.1145/1480881.1480894
http://dx.doi.org/10.1145/1480881.1480894
http://dx.doi.org/10.1145/2508859.2516663
http://dx.doi.org/10.1145/2508859.2516663
http://dx.doi.org/10.1007/978-3-319-10082-1_6
http://dx.doi.org/10.1145/2810103.2813697
http://dx.doi.org/10.1007/s00145-019-09341-z
http://eprint.iacr.org/2004/331
http://dx.doi.org/10.1007/978-3-662-44381-1_14
http://dx.doi.org/10.1007/978-3-662-44381-1_14
http://dx.doi.org/10.1109/SP.2006.1
https://eprint.iacr.org/2018/306
https://eprint.iacr.org/2018/306
http://dx.doi.org/10.1145/3402457
http://dx.doi.org/10.1137/S0097539702403773
http://dx.doi.org/10.1137/S0097539702403773
http://dx.doi.org/10.1145/2046707.2046746
http://eprint.iacr.org/2005/181
http://dx.doi.org/10.1109/CSF.2019.00018
http://dx.doi.org/10.1109/CSF.2019.00018
http://dx.doi.org/10.1145/3371072
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/14.html
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1007/978-3-662-46666-7_4
http://dx.doi.org/10.1023/A:1023064908962
http://dx.doi.org/10.1007/978-3-642-00590-9_7


SSProve: Modular Crypto Proofs in Coq Abate, Haselwarter, Rivas, Van Muylder, Winterhalter, Hrit,cu, Maillard, Spitters

[23] E. Rescorla. The transport layer security (TLS) protocol version 1.3. IETF RFC 5246, 2018.

[24] M. Rosulek. The Joy of Cryptography. Online textbook, 2021.

[25] V. Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR Cryptol. ePrint
Arch., page 332, 2004.

[26] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Fournet,
P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoué, and S. Zanella-Béguelin. Dependent types and multi-
monadic e�ects in F*. POPL. 2016.

4

https://tools.ietf.org/html/rfc8446
http://web.engr.oregonstate.edu/~rosulekm/crypto/
http://eprint.iacr.org/2004/332
https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/


B-systems and C-systems are equivalent
Benedikt Ahrens1∗, Jacopo Emmenegger1∗, Paige North2, and Egbert Rijke3†

1 University of Birmingham, UK, b.ahrens@cs.bham.ac.uk, j.j.emmenegger@bham.ac.uk
2 University of Pennsylvania, US, pnorth@upenn.edu

3 University of Ljubljana, Slovenia, egbert.rijke@fmf.uni-lj.si

Abstract
C-systems were defined by Cartmell as models of generalized algebraic theories. B-

systems were defined by Voevodsky in his quest to formulate and prove an initiality theorem
for type theories. In this work we prove Voevodsky’s conjecture that the categories of
B-systems and of C-systems are equivalent. We do so by specialising a more general
equivalence between non-stratified versions of B-systems and C-systems, which we name
E-systems and CE-systems, respectively.

In his unfinished and only partially published [3–7] research on type theories, Voevodsky
aimed to develop a mathematical theory of type theories, similar to the theory of groups or
rings. In particular, he aimed to state and prove rigorously an “Initiality Conjecture” for type
theories, in line with the initial semantics approach to the syntax of (programming) languages.

One aspect of this Initiality Conjecture is to construct, from the types and terms of a
programming language, a “model”, that is, a mathematical object—typically, a category equipped
with some extra structure. To help with this endeavour in the context of initial semantics
for type theories, Voevodsky introduced the essentially-algebraic theory of B-systems. The
models of this theory, he conjectured in [2], are constructively equivalent to the well-known
C-systems or contextual categories, first introduced by Cartmell as a mathematical structure
for the interpretation of the rules of type theory [1, § 14]. A C-system is a category coming, in
particular, with a length function and a compatible “father” function on objects of the category,
signifying truncation of contexts. Furthermore, there is a special class of morphisms F , closed
under pullback of arbitrary morphisms—thought of as substitution by that morphism.

Voevodsky’s definition of B-systems [2] is inspired by the presentation of type theories in
terms of inference rules. Specifically, type theories “of Martin-Löf genus” are given by sets of
five kinds of judgements, namely well-formed context (Γ `), well-formed type in some context
(Γ ` A type), well-formed term of some type in some context (Γ ` a : A), equality of types
(Γ ` A ≡ B) and equality of terms (Γ ` a ≡ b : A). Interpreting equality of types and
terms as actual equality, and expressing Γ ` A instead as Γ, A `, led Voevodsky to defining a
B-system to consist of families of sets (Bn, B̃n)n∈N, intuitively denoting, for any n ∈ N, contexts
of length n, and terms in a context of length n − 1 together with their types, respectively.
Furthermore, any B-system has weakening and substitution operations on B and B̃, and a
projection map B̃n → Bn giving, for each term, its context and type. B-systems play a crucial
role in Voevodsky’s construction of a syntactic C-system from a signature [7].

The main result of this work is the construction of an equivalence of categories between
the category Csys of C-systems and the category Bsys of B-systems. This equivalence is a
refinement of an equivalence between more general structures introduced in this work, called
CE-systems and E-systems, respectively.

∗This work was funded by EPSRC grant EP/T000252/1.
†This material is based upon work supported by the Air Force Office of Scientific Research under award

number FA9550-17-1-0326.
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An E-system E consists of a category F with a chosen terminal object [] called empty
context, together with a set T (A) for every arrow A in F , whose domain we write as Γ.A where
Γ is its codomain, and

1. for every A ∈ F/Γ, a weakening morphism, i.e. a functor WA : F/Γ→ F/Γ.A together
with an action T (P )→ T (WA(P )) for every B ∈ F/Γ and P ∈ F/Γ.B,

2. for every A ∈ F/Γ and x ∈ T (A), a substitution morphism, i.e. a functor Sx : F/Γ.A→
F/Γ together with an action T (P )→ T (Sx(P )) for every B ∈ F/Γ.A and P ∈ F/Γ.A.B,

3. for every A ∈ F/Γ, an element idtmA ∈ T (WA(A))

that are required to satisfy a number of equations. In particular, weakening and substitution
morphisms are required to distribute over themselves and one over the other. Given two E-
systems E and D, an E-homomorphism F : E→ D consists of a functor F : FE → FD between
the underlying categories strictly preserving the empty context, and an action TE(A)→ TD(FA)
for every arrow A in FE, which distribute over weakening and substitution morphisms and
preserve the elements idtm.

A CE-system A consists of an identity-on-objects functor I : F → C, a chosen terminal
object > in F and, for every f : ∆→ Γ in C and A ∈ F/Γ, a choice of arrows f∗A ∈ F/∆ and
π2(f,A) : ∆.f∗A→ Γ.A in C making the obvious square in C a pullback. This choice is required
to be functorial both in A and f . When > is also terminal in C, we say that A is rooted.
CE-systems naturally form a category CEsys. We write rCEsys for its full subcategory on the
rooted CE-systems.

A category C with a terminal object 1 is said to be stratified if it is a rooted tree, more
precisely, if there exists a stratification functor L : C → (N,≥), i.e. a Conduché functor with
discrete fibres and such that L(1) = 0. For example, the category F generated by the projections
of a C-system is stratified. A functor between stratified categories is stratified if it commutes with
the stratification functors. A (C)E-system is stratified if the underlying category F is stratified
and weakening and substitution (resp. pullback) are stratified functors. A (C)E-homomorphism
is stratified if the underlying functor (resp. the component on F) is so.

Theorem 1. Bsys is equivalent to the subcategory of Esys on the stratified E-systems and
stratified E-homomorphisms.

Theorem 2. Csys is equivalent to the subcategory of CEsys on the stratified rooted CE-systems
and stratified CE-homomorphism.

We construct a functor E2CE: Esys→ CEsys and prove the following.

Theorem 3.

1. The functor E2CE is full and faithful and has a right adjoint CE2E.

2. The adjunction E2CE a CE2E restricts to an equivalence between Esys and rCEsys.

3. The equivalence Esys ' rCEsys restricts to an equivalence between Bsys and Csys.

In the case of B-systems and C-systems, the functor E2CE provides a crucial ingredient in the
construction of the initial C-system from a given system of symbols and typing judgements.

Questions still open are to implement this result in a proof assistant, and to extend the
equivalence between B-systems and C-systems to the usual type formers.
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Introduction An open problem in Homotopy Type Theory is how to define interesting higher-
dimensional algebraic structures which are not truncated. This requires to find an elegant way
to handle complex combinatorial phenomena so that an infinite tower of data can be specified
in a finite fashion.

In particular, deprived of a strict equality — an equality satisfying the uniqueness of identity
proof (UIP) — we can not expect to define strict structures such as operads which could be
used to present, in turn, weak structures as it is classically done in mathematics.

An attempt to remedy this situation has been to reintroduce an equality satisfying the UIP
in systems known as two-level type theories but this separates the type theory into two layers
and gives up the homotopy interpretation of all types [2].

We pursue another approach [1] consisting in extending type theory with a certain class of
strict structures: polynomial monads. From these structures we are then able to encode a wide
range of weak and higher-dimensional structures through a coinductive construction related
to the Baez-Dolan construction [3, 5]. This system has been prototyped by extending Agda’s
type-theory with rewrite rules [4].

Idx : M → U
Cns : (M : M) → IdxM → U
Pos : (M : M) {i : IdxM} → CnsM i → U
Typ : (M : M) {i : IdxM} (c : CnsMi)

→ PosM c → IdxM

Figure 1: Decoding functions

Polynomial monads We postulate a uni-
verse of polynomial monads M : U whose ele-
ments are codes for our monads. The data of
the functorial part is given by a set of decod-
ing functions (Figure 1). They can be seen as
a way to describe the signature of an algebraic
theory: the elements of IdxM , which we refer to
as indices serve as the sorts of the theory, and
for i : IdxM , the type CnsM i is the collection
of operation symbols whose “output” sort is i.
The type PosM c then assigns to each operation a collection of “input positions” which are
themselves assigned an index via the function Typ .

η : (M : M) (i : IdxM) → CnsM i

µ : (M : M) {i : IdxM} (c : CnsM i)

→ (δ : (p : PosM c) → CnsM (TypM c p))

→ CnsM i

Figure 2: Operations of the monad

Next, we equip this data with a unit η
and a multiplication µ satisfying some laws en-
dowing the functor with a structure of monad
(Figure 2). µ sends a well-typed depth-2
tree of constructors of M to a constructor
of M while preserving the positions. Cru-
cially, it is subject to rewrite rules making it
definitionally associative and unital with unit
η.
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For every monad we want to introduce, we first postulate its code M : M then we extend
the decoding functions with the relevant data. This is accomplished using rewrite rules.

Pullback monad Given a monad M and a type family X0 : IdxM → U , we define the
pullback monad PbM X0 which reindexes constructors of M . Its type of indices is

∑
i:IdxM X0 i

and constructors indexed by (i, x) are constructors c : CnsM i together with a decoration
ν : (p : PosM c) → X0 (TypM cp). The index at position p is then given by (TypM cp, ν p).
The monadic structure is obvious: the multiplication uses the multiplication of the underlying
monad M and forgets the decoration of the inner edges. As for the unit, it uses the unit of M
and decorates its input with the index of the output.

Slice monad Given a monad M , we define the monad SliceM whose indices are
∑

i:IdxM CnsM i
and whose constructors β indexed by (i, c) are well-formed trees of constructors of M which
multiply to c by µ. The positions of β correspond to the nodes of the tree. The multiplication
µ substitutes trees for the nodes of the tree corresponding to the root node. The unit promotes
a constructor of M to a corolla — a tree with a single node.

Weak algebraic structures Now, consider the type Idx (Slice (PbM X0)). Its elements are
of the form (i , x , c , ν) where c : CnsM i is a constructor whose inputs are decorated with
ν : (p : PosM c) → X0 (TypM cp) and whose output is decorated with x : X0 i. Therefore, we
can understand a type family X1 : Idx (Slice (PbM X0)) → U as a relation over constructors of
M decorated with elements in X0. We say that the family X1 is multiplicative if for all con-
structors c and for all decorations of inputs ν it is the case that the type

∑
x:X0 i X1 (i , x , c , ν)

is contractible. This defines a multiplication whose result is the first component of this sigma
type.

record OpetopicType (M : M) : U1 where
C : IdxM → U
R : OpetopicType (Slice (PbM C ))

Figure 3: Opetopic type

Opetopic Types Notice that X1 is of type
IdxM1 → U for some monad M1 built from M
and X0. We can iterate this process and con-
sider a family X2 : Idx (Slice (PbM1 X1)) → U .
It can be seen that, if both X1 and X2 are mul-
tiplicative, the multiplication induced by the
multiplicative structure on X1 is associative and
unital up to a propositional identity.

Actually, we can collect these families in a coinductive fashion: this is our definition of
opetopic type (Figure 3). It is to be seen as an infinite collection of well-typed n-cells. We say
that such an opetopic type is fibrant if the families Xn (n > 0) are multiplicative. In that case,
pasting diagrams of n-cells (n > 0) can be composed and this composition is witnessed by a
(n+1)-cell. Moreover, the composition is associative and unital up to a propositional identity.

All is set to introduce our definition of ∞-groupoids: ∞-Grp =
∑

(X:OpetopicType Id) is-fibrantX.
Here Id is the identity monad which has one sort and one constructor with a single input.

Finally, we can state our main result: there is a canonical equivalence

U ' ∞-Grp

In other words, every type admits the structure of an ∞-groupoid in our sense, and that
structure is unique.
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Introduction
We present a model of type theory where types are interpreted as containers [1] aka polynomial
functors. The motivation for this construction is to provide a container semantics for inductive-
inductive types and quotient inductive-inductive types.

Consider the core of our usual example of an inductive-inductive type:

data Con : Set
data Ty : Con → Set
_,_ : (Γ : Con) → Ty Γ → Con
Π : (Γ : Con) (A : Ty Γ) (B : Ty (Γ , A)) → Ty Γ

Since the constructor Π uses the previously defined constructor _,_ in its domain there is no
hope of a functorial semantics where an inductive type is the initial algebra of a container.
Instead we have to interpret the domain of a constructor as a functor L from the category of
algebras induced by the previous constructors to Set, and the codomain a functor from the
category of elements of L to Set. The semantics of a constructor with regard to a fixed algebra
X is given by (x : L X) → R (X , x). This is explained in detail in [2] where L is an arbitrary
functor and types are interpreted using the usual presheaf semantics of type theory.

Such a functorial semantics is too generous because there are many functors which do not
have initial algebras. Hence we want to use containers to model strict positivity semantically.
As a first step we show that containers do form a model of basic type theory, i.e. a category
with families.

Tamara von Glehn also presents a model of type theory using polynomial functors [7] using
comprehension categories as notion of model. The same model was presented by Atkey [4] and
by Kovács [6] using categories with families (CwFs). This model has the same contexts and
substitutions as ours but different types and terms (see below).

In this abstract when we write Set we mean Agda’s universe of types and we assume unique-
ness of identity proofs (see also the Discussion).

The model
A container (or polynomial functor) is given by a set of shapes S : Set and a family of positions
P : S → Set. This gives rise to a functor S � P : Set → Set which on objects is
given by (S � P) X = Σ s : S . P s → X. Given containers S � P and T � Q a
morphism is given by a function on shapes f : S → T and a family of functions on positions
g : (s : S) → Q (f s) → P s — note the change of direction. This gives rise to a
natural transformation f � g : (X : Set) → (S � P) X → (T � Q) X given by

∗Supported by USAF, Airforce office for scientific research, award FA9550-16-1-0029.
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(f � g) X (s , p) = (f s, λ s → p ◦ g s). Using the Yoneda lemma we can show that every
natural transformation between containers arises this way (i.e. the evaluation functor from the
category of containers to the functor category is full and faithful).

We can generalize set-containers to containers over an arbitrary category C, i.e. covariant
functors C → Set using S : Set and P : S → C and (S � P) X = Σ s : S . C (P s, X)
and morphisms are given by f : S → T and g : (s : S) → C (Q (f s) , P s) with the same
definition of the natural transformation.

We define a category with families (CwF) which are the algebras of an intrinsic presentation
of Type Theory as given in [3]. The objects corresponding to contexts are set containers and
the morphisms are container morphisms. We write Con for this category. Below we sketch some
aspects of the construction, for details please check our (incomplete) Agda formalisation [5].

To interpret types we define a functor Ty : Con → Set1 on objects: given Γ : Con, an
A : Ty Γ is given by a container A :

∫
Γ → Set. Here

∫
Γ is the category of elements of

Γ with objects Σ X : Set . Γ X and morphisms
∫

Γ ((X , x) , (Y , y) are given by a function
f : X → Y such that Γ f x = y.

In contrast, a type in von Glehn’s model [7] over a context Γ = S � P is a container
A :

∫
(Const S) → Set where Const S is the constant S presheaf. Hence types there are

dependent only on shapes, but not positions.
The interpretation of terms is given by Tm :

∫
Ty → Set. On an object of

∫
Ty, i.e.

a Γ : Con and A :
∫

Γ → Set a term is given by a dependent natural transformation
(X : Set) (x : Γ X) → A (X , x). Assuming that Γ = SΓ � PΓ and A = SA � PA

using the dependent Yoneda lemma we can show that this corresponds to f : SΓ → SA and
g : (s : SA) →

∫
Γ (PA s , (PΓ (Ps

A s) , Ps
A s , id)). This can be further simplified using

dependent types — see our Agda code.
Given A : Ty Γ we write PX

A : SA → Set, Ps
A : SA → SΓ and Pg

A : (s : SA) →
PΓ (Ps

A s) → PX
A s for the projections of PA : SA →

∫
Γ.

The empty context is given by the terminal object in Con which is 1 � 0. Assuming a
Γ : Con and A : Ty Γ we construct the context extension Γ , A as SA � PX

A . We can verify
the universal property — see the Agda code.

The definition of type substitution requires pushouts which can be defined using a quotient
inductive type (QIT). That is given f � g : Con (∆ , Γ) and A : Ty Γ we construct
A[f � g] = S � P : Ty Γ. We obtain S as the pullback of f and Ps

A. Given s : S , P s is the
pushout of g s and Pg

A s (this only type-checks after transporting along the equations).

Discussion
For our application we need to construct the model wrt to an already constructed category of
algebras instead of Set. Hence we need to verify that pushouts exists. We need a constructive
variant of locally presentable categories here, which have the required colimits.

For our application we only need a basic CwF structure but we can also interpret Σ-types
and we expect that we can interpret Π-types in our model, the latter giving rise to higher-order
abstract syntax.

One issue with our construction is that types and contexts are not h-sets hence we need to
address the coherence issues. We believe that this fits very well with a generalisation of CwFs
where types can be groupoids (or 1-types) which we are also investigating (coherent CwFs).
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1 Introduction
Types have been broadly used to verify program properties and reduce or, in some cases,
eliminate run-time errors. Programming languages adopt either static typing or dynamic typing
to prevent programs from erroneous behavior. Static typing is useful for compile time detection
of type errors. Dynamic typing is done at run-time and enables rapid software development.
Integration of static and dynamic typing has been a quite active subject of research in the last
years under the name of gradual typing [9, 10,18,19,28–30].

Intersection types, introduced by [11] in 1980, give a type theoretical characterization of
strong normalization. Several other contributions followed, making intersection types a rich
area of study [3, 4, 7, 12, 16, 22, 23], also used in practice in programming language design and
implementation [5,8,14,17,26,31]. Although the type inference problem for intersection types is
not decidable in general, it becomes decidable for finite rank fragments of the general system [22].
Rank 2 intersection types [2,16,20,21] are particularly interesting because they type more terms
than the Hindley-Milner type system [15, 25], while maintaining the same complexity of the
typability problem.

In this paper, we present a gradually typed calculus with rank 2 intersection types. To
gradually shift type checking to run-time, one needs to annotate lambda-abstractions with the
dynamic type, Dyn, which matches with any type. Therefore, gradual type systems have an
intrinsic need for explicit type annotations.

2 Annotated Terms
Intersection types were originally designed as descriptive type assignment systems à la Curry,
where types are assigned to untyped terms. Prescriptive versions of intersection type sys-
tems, supporting typed terms with type annotations in the λ-abstractions, are not triv-
ial [6, 16, 24, 26, 27, 32]. We faced similar problems in our typed calculus to add dynamic type
annotations to individual occurrences of formal parameters. As an example, consider the fol-
lowing annotated λ-expression, where we need to instantiate σ in order to make the expression
well-typed: (λxDyn∧(Int→Int) . x x) (λyσ . y). This expression can be typed with Dyn, because
λxDyn∧(Int→Int) . x x has type Dyn ∧ (Int → Int) → Dyn and λyσ . y may have two types:
(Int → Int) → Int → Int , with σ equal to Int → Int , and Int → Int , with σ equal to Int .
The question now is how to choose the right type for σ. One might be tempted to write the
term as λy(Int→Int)∧Int . y, however that would result in the expression being typed as either
(Int → Int) ∧ Int → Int → Int or (Int → Int) ∧ Int → Int , both of which are incorrect.
Several solutions have been presented to this problem [6, 24, 26, 27, 32]. Intersection-types à
la Church [24] tackled this challenge by dividing the calculus into two: marked-terms encode
λ-calculus terms and connect to proof-terms via a variable mark, while the latter carries logical
information in the form of proof trees with type annotations. Although technically sound and
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clean, the added overhead of carrying two distinct terms, as well as the indirection arising from
the connection between them, is too heavy for our specific purpose, since integrating with grad-
ual typing will already mean adding a significant level of extra complexity. Branching Types [32]
encoded different derivations directly into types, by assigning to types a kind that keeps track
of the shapes of each derivation. Although being an elegant way of dealing with explicit an-
notations we found more recent approaches to be more viable and useful for integration with
gradual typing. Another typed language with intersection types is Forsythe [26], however it was
not considered simply because some terms in this system lack correct typings when fully anno-
tated, e.g. there is no annotated version of (λx.(λy.x)) with type (τ → τ → τ) ∧ (ρ→ ρ→ ρ).
A Typed Lambda Calculus with Intersection Types [6] introduces parallel terms, where each
component is annotated, resulting in the typing of the parallel term with an intersection type.
Besides allowing type annotations, parallel terms also make easier the definition of dynamic
type checking of terms typed by an intersection type. Thus, due mainly to this simplicity and
elegant design, we chose to use [6] as the basis upon which we built our system. Our gradual
type system makes use of parallel terms of the form M1 | . . . | Mn, where each Mi, for i ∈ 1..n,
is a term with a unique type assigned to it. In the example above, the expression would now be
annotated as (λxDyn∧(Int→Int) . x x) (λyInt→Int . y | λzInt . z), where the type of the argument
is ((Int → Int) → Int → Int) ∧ (Int → Int).

3 Contributions
Standard gradual types enable to declare every occurrence of formal function parameters as
dynamically typed. Our system, using intersection types, enables to declare some occurrences
of a formal parameter as dynamically typed and other occurrences as statically typed. This
gives a new fine-grained definition of dynamicity which is only possible by the use of intersection
types. Thus, the main contributions of our paper are:

1. a gradual intersection typed calculus with rank 2 intersection types. In this calculus, for-
mal parameters in abstractions are annotated with gradual intersection types and distinct
typed versions of function arguments are written as a parallel term;

2. a compilation procedure into a new cast calculus, which inserts run-time checks to ensure
that plausibly correct code is verified at run-time;

3. a type safe operational semantics, where progress and preservation hold, which reduces
cast calculus expressions;

4. we show that our calculus has the usual correctness criteria properties for gradual typing
[30], mainly that the gradual guarantee holds.

Although originally defined in a programming language context, the logical meaning of the
dynamic type is an interesting question, even more relevant in the context of intersection type
systems, due to the apparent similarities between the dynamic type and the ω type [13]. Our
work can be viewed as a first step towards a proof-theoretical characterization of the dynamic
type in the context of intersection types. In our paper, we restrict gradual intersection types
to rank 2, for which there is a complete type inference algorithm [1]. We believe that it is
possible to adapt the algorithm in [1] to output the whole syntactic tree of annotated parallel
terms, given a partially annotated lambda term as input. This would also enable the use of
our calculus as an intermediate code in a gradually typed programming language, avoiding the
extra effort of programmers to write several annotated copies of function arguments.

2



A Gradual Intersection Typed Calculus P. Ângelo and M. Florido

References

[1] Pedro Ângelo and Mário Florido. Type inference for rank 2 gradual intersection types. In William J.
Bowman and Ronald Garcia, editors, Trends in Functional Programming (TFP 2019), LNCS,
pages 84–120. Springer, 2020.

[2] Steffen van Bakel. Rank 2 intersection type assignment in term rewriting. Fundam. Inf.,
26(2):141–166, May 1996.

[3] Stephanus Johannes van Bakel. Intersection type disciplines in lambda calculus and applicative
term rewriting systems. Amsterdam: Mathematisch Centrum, 1993.

[4] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model and
the completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[5] Lorenzo Bettini, Viviana Bono, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti Ven-
neri. Java & Lambda: a Featherweight Story. Logical Methods in Computer Science, Volume 14,
Issue 3, September 2018.

[6] Viviana Bono, Betti Venneri, and Lorenzo Bettini. A typed lambda calculus with intersection
types. Theor. Comput. Sci., 398(1–3):95–113, May 2008.

[7] Sébastien Carlier and J.B. Wells. Expansion: the crucial mechanism for type inference with
intersection types: A survey and explanation. Electronic Notes in Theoretical Computer Science,
136:173 – 202, 2005. Proceedings of the Third International Workshop on Intersection Types and
Related Systems (ITRS 2004).

[8] Avik Chaudhuri. Flow: Abstract interpretation of javascript for type checking and beyond. In
Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security,
PLAS ’16, page 1, New York, NY, USA, 2016. Association for Computing Machinery.

[9] Matteo Cimini and Jeremy G. Siek. The gradualizer: A methodology and algorithm for generating
gradual type systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’16, pages 443–455, New York, NY, USA, 2016.
ACM.

[10] Matteo Cimini and Jeremy G. Siek. Automatically generating the dynamic semantics of grad-
ually typed languages. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, pages 789–803, New York, NY, USA, 2017. ACM.

[11] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the
λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 10 1980.

[12] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms. Math-
ematical Logic Quarterly, 27(2-6):45–58, 1981.

[13] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Patrick Sallé. Functional characterization of
some semantic equalities inside lambda-calculus. In Automata, Languages and Programming, 6th
Colloquium, July 16-20, 1979, volume 71 of Lecture Notes in Computer Science, pages 133–146.
Springer, 1979.

[14] Vincent Cremet, François Garillot, Sergueï Lenglet, and Martin Odersky. A core calculus for scala
type checking. In Rastislav Královič and Paweł Urzyczyn, editors, Mathematical Foundations of
Computer Science 2006, pages 1–23, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[15] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’82, pages 207–212, New York, NY, USA, 1982. ACM.

[16] Ferruccio Damiani. Rank 2 intersection types for local definitions and conditional expressions.
ACM Trans. Program. Lang. Syst., 25(4):401–451, July 2003.

[17] Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti Venneri. Intersection Types in Java:
Back to the Future, pages 68–86. Springer International Publishing, Cham, 2019.

[18] Ronald Garcia and Matteo Cimini. Principal type schemes for gradual programs. In Proceedings of
the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

3



A Gradual Intersection Typed Calculus P. Ângelo and M. Florido

POPL ’15, pages 303–315, New York, NY, USA, 2015. ACM.
[19] Ronald Garcia, Alison M. Clark, and Éric Tanter. Abstracting gradual typing. In Proceedings of

the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’16, pages 429–442, New York, NY, USA, 2016. ACM.

[20] T. Jim. Rank 2 type systems and recursive definitions. Technical report, Cambridge, MA, USA,
1995.

[21] Trevor Jim. What are principal typings and what are they good for? In Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’96, pages
42–53, New York, NY, USA, 1996. ACM.

[22] A. J. Kfoury and J. B. Wells. Principality and decidable type inference for finite-rank intersec-
tion types. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’99, pages 161–174, New York, NY, USA, 1999. ACM.

[23] A.J. Kfoury and J.B. Wells. Principality and type inference for intersection types using expansion
variables. Theoretical Computer Science, 311(1):1 – 70, 2004.

[24] Luigi Liquori and Simona Ronchi Della Rocca. Intersection-types à la church. Information and
Computation, 205(9):1371 – 1386, 2007.

[25] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17(3):348 – 375, 1978.

[26] John C. Reynolds. Design of the Programming Language Forsythe, pages 173–233. Birkhäuser
Boston, Boston, MA, 1997.

[27] Simona [Ronchi Della Rocca]. Intersection typed λ-calculus. Electronic Notes in Theoretical
Computer Science, 70(1):163 – 181, 2003. ITRS ’02, Intersection Types and Related Systems
(FLoC Satellite Event).

[28] Jeremy G Siek andWalid Taha. Gradual typing for functional languages. In Scheme and Functional
Programming Workshop, volume 6, pages 81–92, 2006.

[29] Jeremy G. Siek and Manish Vachharajani. Gradual typing with unification-based inference. In
Proceedings of the 2008 Symposium on Dynamic Languages, DLS ’08, pages 7:1–7:12, New York,
NY, USA, 2008. ACM.

[30] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. Refined Criteria
for Gradual Typing. In 1st Summit on Advances in Programming Languages (SNAPL 2015),
volume 32 of Leibniz International Proceedings in Informatics (LIPIcs), pages 274–293, Dagstuhl,
Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[31] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement types for typescript. In
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’16, page 310–325, New York, NY, USA, 2016. Association for Computing
Machinery.

[32] Joe B. Wells and Christian Haack. Branching types. In Proceedings of the 11th European Sympo-
sium on Programming Languages and Systems, ESOP ’02, pages 115–132, London, UK, UK, 2002.
Springer-Verlag.

4



W

-types and Bisimulation

Henning Basold1 and Daniël Otten2
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1 Introduction

We often use the intuition that inductive types correspond to initial algebras in the category-
theoretical sense, while coinductive types correspond to final coalgebras. However, once we
want to make this intuition precise, we face some problems. For inductive types, an induction
principle, also known as dependent iteration, can be combined with extensionality to show that
inductive types are initial algebras. Trying the same idea naively for coinductive types however
makes equality undecidable [2].

In fact, the situation for inductive types is already quite a bit more subtle. Firstly, there is
a choice between assuming that the induction principle satisfies its equalities definitionally or
only propositionally [7, section 5.5]. Secondly, there are multiple ways to define the induction
principle. Fortunately, with function extensionality these turn out to be equivalent [1, 7].

In the case of coinductive types, we are not that fortunate because the standard definition
of the induction principle uses dependent functions and can therefore not easily be dualised.
Interestingly, the problem of finding a good definition of the coinduction principle is not unique
to type theory and already comes up in the theory of coalgebras [6]. In this work, we study
different versions of the coinduction principle in Martin-Löf type theory and show under which
conditions these are equivalent. The various definitions we consider have different desirable
properties (elegance; ease of use; applicability; constructabilty; compositionality).

2 Coalgebras and

W

-Types

We restrict our attention to strictly positive coinductive types, as these arise from coalgebras for
polynomial functors. This avoids complications that more general classes of functors may have
within the context of type theory. The polynomial functor for A : Type and B : A → Type [3]
is the functor P : Type→ Type given by

P X :=
∑

(a :A)B a→ X,

P f := λ(a, d). (a, f ◦ d).

A P -coalgebra consists of an object X and a morphism obsX : X → P X. Together with an
appropriate notion of morphisms, P -coalgebras form a category. Our interest lies then in finding
and studying the final objects in this category.

Intuitively, a P -coalgebra obsX : X → P X sends a term x : X to a value a : A and for every
b : B a a new term of X. By iterating obsX , we can generate a tree of potentially infinite depth.
Its nodes are labeled with values a : A and have precisely one child for every b : B a. We assume
the existence of a type

W

of trees together with a map obs W:

W

→ P

W

. We now wish to
compare different methods of enforcing that such an

W

-type is the final P -coalgebra, that is,
we compare various ways of implementing the coinduction principle in type theories.
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We start by defining two kinds of bisimulations, for this we use two different ways to define
relations on a type. The first definition comes from category theory and is based on spans:

SpanRel X :=
∑

(R : Type)(R→ X)2,

SpanRelMor (R, ρ0, ρ1) (S, σ0, σ1) :=
∑

(f :R→S)((σ0 ◦ f ≡ ρ0)× (σ1 ◦ f ≡ ρ1)).

This leads to a type of bisimulation also known as AM-bisimulation [6]:

SpanBisim (X, obsX) :=
∑

(R : Coalg)(CoalgMor R (X, obsX))2,

SpanBisimMor (R, ρ0, ρ1) (S, σ0, σ1) :=
∑

(f : CoalgMorRS)((σ0 ◦ f ≡ ρ0)× (σ1 ◦ f ≡ ρ1)).

The second definition of a relation is more standard for type theory, using a dependent type:

DepRel X := X → X → Type,

DepRelMor R S :=
∏

(x0,x1 :X)(R x0 x1 → S x0 x1).

This leads to a type of bisimulation also known as HJ-bisimulation [6]:

LiftingBisim (X, obsX) :=
∑

(R : DepRelX)

∏
(x0,x1 :X)R x0 x1 →∑

(p : pr0(obsX x0)≡pr0(obsX x1))

∏
(b0 :B (pr0(obsX x0)))

R (pr2 (obsX x0) b0) (pr2 (obsX x1) (traB p b0)).

3 Notions of Final Coalgebras

It is common to assume that for any P -coalgebra (X, obsX) we have a dependent function
coiter : CoalgMor (X, obsX) (

W

, obs W). This makes

W

-types weakly final, as there exists a mor-
phism to it from all other P -coalgebras. However, the uniqueness of this morphism is not
guaranteed. We consider three assumptions that are sufficient to obtain uniqueness:

IsFinM (

W

, obs W) :=
∏

((X,obsX) : Coalg)IsContr (CoalgMor (X, obsX) (

W

, obs W)),

IsCohM (

W

, obs W) :=
∏

((X,obsX) : Coalg)CoalgMor (X, obsX) (

W

, obs W)×∏
((f0,comf0

),(f1,comf1
) : CoalgMor(X,obsX) (

W

,obs W))∑
(p : f0≡f1)

∏
(x :X)

ap(λf.obs W(f x)) p · apply≡ comf1 x ≡
apply≡ comf0 x · ap(λf.P f (obsX x)) p,

IsSpanBisimM (

W

, obs W) :=
∏

((X,obsX) : Coalg)CoalgMor (X, obsX) (

W

, obs W)×∏
((R,ρ0,ρ1) : SpanBisim(

W

,obs W))

IsContr (SpanBisimMor (R, ρ0, ρ1) ((

W

, obs W), id W, id W)).

Here the first and second definitions are similar to dual definitions for W-types [7, chapter 5].
The third definition is based on our first notion of bisimulation. We are working on a fourth
definition, IsLiftingBisimM (

W

, obs W), based on our second notion of bisimulation. Currently
we have a version that is weaker than the other definitions, we want to make it equivalent.

In our work we show the following implications by constructing functions between the types:

IsFinM IsSpanBisimM IsCohM IsLiftingBisimM
funext

Here the arrow marked with ‘funext’ uses the axiom of function extensionality. We are still
working on the last missing arrow. These results have largely been formalised in the proof
assistant Agda [4, 5]. The code can be accessed at https://github.com/DDOtten/M-types.
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The syntactic tale of the oracle and the trees
A model of continuity in a dependent setting
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A folklore result from computability theory is that any computable function must be con-
tinuous. There are many ways to prove, or even merely state, this theorem, since it depends
in particular on how computable functions are represented. Assuming we pick the λ-calculus
as our favorite computational system, one of the most straightforward paths boils down to
building a semantic model for it, typically some flavor of Complete Partial Orders (CPOs).
By construction, CPOs being a specific kind of topological spaces, all functions are then inter-
preted as continuous functions in the model. For some types simple enough such as R → R,
CPO-continuity implies continuity in the traditional sense, thus proving the claim.

Instead of going down the semantic route, Escardó developed an alternative syntactic tech-
nique called effectful forcing [3] to prove the continuity of all functions of type (N → N) → N
that are definable in System T. While semantic models such as CPOs are crafted inside a
non-computational metatheory, Escardó’s technique amounts to building a model of System T
inside intensional Martin-Löf type theory (MLTT), that is, in a proper programming language.
The effectful epithet is justified by the fact it intuitively consists in embedding System T inside
two impure extensions, each featuring a different kind of side-effects, and by constraining them
via a logical relation. This argument being purely syntactic, it can be leveraged to interpret
much richer languages than System T. We describe here how to generalize the latter technique
so as to recover his continuity result for a dependent type theory similar to MLTT.

Unfortunately, since Escardó’s model introduces observable side-effects, the type theory
resulting from our generalization needs to be slightly weakened down, or would otherwise be
inconsistent [6]. We thus provide a model of Baclofen type theory (BTT) [7] rather than MLTT.
BTT is a type theory with dependent products and a predicative hierarchy of universes. The
main difference with MLTT actually lies in the typing rule for dependent elimination, where
the predicate needs to be restricted so as to be linear. For instance, when MLTT has a single
dependent eliminator for the type of booleans, BTT features two different eliminators, a non-
dependent one, B case, and a strict dependent one, B rect. The latter comes with the following
typing rule:

` P : B→ � ` ut : P true ` uf : P false

` B rect P ut uf : Π(b : B). θB P b

where θB constant is the storage operator, getting rid of side effects. We have the following
reduction rules:

1. θB P true ≡ P true

2. θB P false ≡ P false

3. θB P β ≡ unit for any β non standard inhabitant of B

Theorem 1. Any function `BTT f : (N→ N)→ N is continuous.
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Following Escardó, the proof goes by considering the operator D : � → �, which given a
type A : �, associates the type of well-founded, N-branching trees, with inner nodes labeled in
N and leaves labeled in A. In Coq, this amounts to the following inductive definition:

Inductive D (A : �) : � := η : A→ D A | β : (N→ D A)→ N→ D A.

These dialogue trees can be seen as functions of type (N → N) → A. Intuitively, every inner
node is a call to an oracle α : N→ N, and the answer is the label of the leaf. This interpretation
is implemented by a recursively defined dialogue function:

∂ : Π{A : �} (α : N→ N) (d : D A). A
∂ α (η x) := x
∂ α (β k i) := ∂ α (k (α i))

Thanks to the well-foundedness of these dialogue trees, it is relatively straightforward to
show that functions defined this way are continuous on N→ N, equipped with the usual Baire
topology. The next step is to prove that every BTT-definable function is extensionally equal to
such a dialogue.

The effectful forcing technique consists in embedding System T inside two impure extensions,
and to translate the latter intoMLTT, thus building a weak form of syntactic model [5, 8]. These
extensions are:

1. System TΩ, which is mainly System T with a formal oracle Ω : ι→ ι. Its translation [.]ω

into MLTT is simply the standard interpretation of System T, parameterized by an oracle
ω : N→ N. We have: JιKω = N, [0]ω = 0, [Succ]ω = Succ, [Ω]ω = ω, etc.

2. the dialogue interpretation, which is again TΩ, but this time translated into MLTT using
a non-standard translation [.]D. Here, JιKD = D N, [0]D = η 0 and every function is
interpreted via the bind function of the D monad. For instance, [Succ]D is the function
that applies Succ to every leaf of a tree. Finally, [Ω]D = γ where γ : D N → D N is a
well chosen term from MLTT.

A logical relation constrains these two extensions so as to ensure a fundamental property, namely
that for every term t : ι of System T, and for every ω : N→ N, we have:

[t]ω = ∂ ω [t]D.

Crucially, [t]ω depends on ω whereas [t]D does not. From this property and a bit of work, it
follows that every function f : (N→ N)→ N definable in System T is continuous.

In our model, we follow a similar route, albeit for some slight adjustments: we first define
the axiom translation [.]αa from BTT to MLTT, parameterized by an oracle α : N → N, that
adds α to every context, thus mimicking the first translation, to System TΩ.

We then define the branching translation [.]b which resembles a lot the Dialogue interpreta-
tion but for a crucial change: a type A is not interpreted as D A but as what would amount to
an algebra of the free D monad if we assumed funext. This change ensures that the branching
translation provides a model of BTT.

Finally, the logical relation becomes an additional layer of parametricity. More precisely, it
is a case of cheap binary parametricity, following the taxonomy from Boulier [2]. However, in
order to interpret universes we must also require our parametricity to be algebraic with respect
to the D operator, making it a layer of algebraic binary parametricity.

We have formalized in Coq our proof that Escardó’s result extends to BTT [1]. We also
discuss whether this extension is the best we can hope for, as a naive phrasing of this result
would make MLTT inconsistent [4].

2



A model of continuity in a dependent setting M. Baillon, P.-M. Pédrot

References
[1] Martin Baillon. Formalization: Syntactic model of continuity. URL: https://gitlab.inria.fr/

mbaillon/city-of-streams.
[2] Simon Boulier. Extending type theory with syntactic models. Logic in Computer Science [cs.LO].

École nationale supérieure Mines-Télécom Atlantique, 2018, https://tel.archives-ouvertes.fr/tel-
02007839.

[3] Martin Hötzel Escardó. Continuity of Gödel’s system T definable functionals via ef-
fectful forcing. Proceedings of the Twenty-ninth Conference on the Mathematical Founda-
tions of Programming Semantics, MFPS 2013, New Orleans, LA, USA, June 23-25, 2013,
https://doi.org/10.1016/j.entcs.2013.09.010. doi:10.1016/j.entcs.2013.09.010.

[4] Martin Hötzel Escardó and Chuangjie Xu. The inconsistency of a brouwerian conti-
nuity principle with the curry-howard interpretation. 13th International Conference on
Typed Lambda Calculi and Applications, TLCA 2015, July 1-3, 2015, Warsaw, Poland,
https://doi.org/10.4230/LIPIcs.TLCA.2015.153. doi:10.4230/LIPIcs.TLCA.2015.153.

[5] Martin Hofmann. Extensional constructs in intensional type theory. CPHC/BCS distinguished
dissertations. Springer, 1997.

[6] Pierre-Marie Pédrot and Nicolas Tabareau. The fire triangle: how to mix substitution, dependent
elimination, and effects. Proc. ACM Program. Lang., 4(POPL):58:1–58:28, 2020. doi:10.1145/
3371126.

[7] Pierre-Marie Pédrot and Nicolas Tabareau. An effectful way to eliminate addiction to dependence.
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland,
June 20-23, 2017, 2017, https://doi.org/10.1109/LICS.2017.8005113. doi:10.1109/LICS.2017.
8005113.

[8] Pierre-Marie Pédrot Simon Boulier and Nicolas Tabareau. The next 700 syntactical models of
type theory. Certified Programs and Proofs (CPP 2017), Jan 2017, Paris, France. pp.182 - 194,
https://doi.org/10.1016/j.entcs.2013.09.010. doi:10.1145/3018610.3018620.

3

https://gitlab.inria.fr/mbaillon/city-of-streams
https://gitlab.inria.fr/mbaillon/city-of-streams
https://doi.org/10.1016/j.entcs.2013.09.010
https://doi.org/10.4230/LIPIcs.TLCA.2015.153
https://doi.org/10.1145/3371126
https://doi.org/10.1145/3371126
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1145/3018610.3018620


Equality checking for dependent type theories∗

Andrej Bauer and Anja Petković

University of Ljubljana, Ljubljana, Slovenia

Equality checking algorithms are essential components of proof assistants based on type
theories [9, 3, 10, 13, 12, 1]. They free the user from the burden of proving equalities, and provide
computation-by-normalization engines. Some systems [11, 8, 7] also allow user extensions to the
built-in equality checkers, possibly sacrificing completeness and sometimes even soundness. The
situation is even more challenging in a proof assistant that supports arbitrary user-definable
type theories, such as Andromeda 2 [4, 5], where in general no equality checking algorithm may
be available. Still, the proof assistant should provide convenient support for equality checking
that works well in the common, well-behaved cases.

We developed an extensible equality checking algorithm and proved it to be sound [6] for a
large class of dependent type theories. The algorithm is parameterized by computation rules
(β-rules), extensionality rules (inter-derivable with η-rules), and a notion of normal form. It
combines and extends algorithms based on type-directed equality checking [14, 2] that intertwine
two phases: the type-directed phase applies extensionality rules to reduce the problem to simpler
types, while the normalization phase applies computation rules to compute normal forms.

We define precisely what it means for an equality rule to be a computation or an extension-
ality rule. For this purpose we identify the notion of an object-invertible rule, which guarantees
soundness of normalization steps and of type-directed reductions of subsidiary equations. We
give simple syntactic criteria for recognizing computation and extensionality rules.

We implemented the algorithm in the Andromeda 2 proof assistant in around 1400 lines
of OCaml code. The user needs only provide the equality rules they wish to use, after which
the algorithm automatically classifies them either as computation or extensionality rules (and
rejects those that are of neither kind), and devises an appropriate notion of normal form. The
implementation consults the nucleus to build a trusted certificate of every equality it proves
and every term it normalizes. It is easy to experiment with different sets of equality rules
and dynamically switch between them. In the case of well-behaved type theories, such as the
simply typed lambda calculus or Martin-Löf type theory, the algorithm behaves like well-known
standard equality checkers. We do not address completeness and termination, as these depend
heavily on the choice of computation and extensionality rules.

Object-invertible, computation and extensionality rules. In an inference rule
P1 · · · Pn

C

the object premises are those Pi which are type or term judgements, and equational premises
those that are type or term equations. We say that such a rule is object-invertible when the
following holds for every instance of it: if the conclusion is derivable (possibly by application
of a different rule) then the object premises are derivable.

Object-invertible rules may be used to invert derivable judgements up to equational premises.
That is, if a derivable judgement J coincides with some instance of the conclusion C of an object-
invertible rule, then we are guaranteed that the corresponding instances of the object premises
are also derivable, so only the equational premises must be checked.

∗This material is based upon work supported by the U.S. Air Force Office of Scientific Research under award
number FA9550-17-1-0326, grant number 12595060, and award number FA9550-21-1-0024. We thank Philipp
G. Haselwarter, who was initially contributing to the project, for his support and discussions.
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A type computation rule is a derivable type equality rule, shown below on the left,

P1 · · · Pn

` A ≡ B
P1 · · · Pn

` A type

such that its left-hand side presupposition, shown above on the right, is object-invertible and
deterministic (its conclusion can be instantiated to match a given judgement in at most one
way). Term computation rules are defined similarly.

An extensionality rule is a derivable rule, shown below on the left,

P1 · · · Pn ` x :C ` y :C Q1 · · · Qm

` x ≡ y :C
P1 · · · Pn

` C type

such that Q1, . . . , Qm are equational premises, and its type presupposition, shown above on the
right, is object-invertible and derivable.

Principal arguments and normal forms. A third component of the algorithm is a suit-
able notion of normal form, which guarantees correct execution of normalization and coherent
interaction of both phases of the algorithm. In our setting, normal forms are determined by
a selection of principal arguments. By varying these, we obtain known notions, such as weak
head-normal and strong normal forms (all arguments are declared principal). An expression is
said to be in normal form if no computation rule applies to it, and its principal arguments are
in normal form.

In the implementation the user may specify the principal arguments directly, or let the
algorithm read the principal arguments off the computation rules automatically, as follows: if
s(u1, . . . , un) appears as a left-hand side of a computation rule, then the principal arguments of s
are those ui’s that are not metavariables, i.e., matching against them does not automatically
succeed, and so they should first be normalized.

Overview of the type-directed equality checking. The equality checking algorithm is
parameterized by the underlying type theory, computation rules, extensionality rules, and prin-
cipal arguments. It has the following mutually recursive parts:

1. Normalize a type or a term: normalize the principal arguments, apply a computation rule
and recursively check subsidiary equations as they arise; repeat until no computation rule
applies.

2. Check A ≡ B: normalize A and B and structurally compare their normal forms.
3. Structurally check A ≡ B: compare A and B by an application of a congruence rule,

where the principal arguments are recursively compared structurally and the others by
the general equality checks.

4. Check s ≡ t : A:
(a) type-directed phase: normalize A and apply extensionality rules, if any, to reduce the

equality to subsidiary equalities,
(b) normalization phase: if no extensionality rules apply, normalize s and t and struc-

turally compare their normal forms.
5. Structurally check s ≡ t : A: compare s and t by an application of a congruence rule,

where the principal arguments are recursively compared structurally and the others by
the general equality checks.
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We present a general definition of a class of dependent type theories which we call finitary type
theories. In fact, we provide two variants of such type theories, with and without typing contexts,
and show that they are equally expressive by providing translations between them. Our definition
broadly follows the development of general dependent type theories [2], encompassing type theories
with intuitionistic contexts and type-, term- and the corresponding equality judgements. Examples of
theories that can be expressed in this formalism include Martin-Löf type theory with a variety of type
formers (e.g. intensional or extensional equality types, universes, inductive types, . . . ), simply typed
λ-calculi; among counterexamples we find theories with linear context, modal type theories, or cubical
type theory where the interval has a special role. In contrast to [2], our finitary type theories are
specialized to serve as a formalism for implementation of a proof assistant. Indeed, the present work
is the theoretical foundation of the Andromeda 2 proof assistant [1], in which type theories are entirely
defined by the user. Nevertheless, we expect the notion of finitary type theories to be applicable in other
situations and without reference to any particular implementation.

LCF-style proof assistants, such as Andromeda 2, are based on forward-style reasoning in which pre-
viously derived judgements are combined, using the constructors of an abstract datatype of judgements,
to form new judgements. A question arises how to combine the underlying contexts. For example, given
Γ ` 𝑎 : 𝐴 and Δ ` 𝑏 : 𝐵, how should Γ and Δ be combined to give a context for (𝑎, 𝑏) : 𝐴 × 𝐵?

In dependent type theories the problem of combining contexts is exacerbated by dependencies.
Following traditional presentations of logic and of context-free pure type systems Γ∞ by Geuvers et
al. [3], we address the problem by removing the context altogether, and formulate context-free type
theories in which judgements have no explicit typing contexts. Instead every variable and metavariable
occurrence is annotated with its type or meta-level type, respectively.

Consequently, in context-free type theories judgements of the form “Θ;Γ ` J” are replaced with just
“J” and rather than having a : 𝐴 in the context, each occurrence of a is annotated with its type as a𝐴.

We have to overcome several technical complications, the most challenging of which is the lack of
strengthening, which is the principle stating that if Θ;Γ, a:𝐴,Δ ` J is derivable and a does not appear
in Δ and J, then Θ;Γ,Δ ` J is derivable. An example of a rule that breaks strengthening is the equality
reflection rule familiar from extensional type theory:

` A type ` s : A ` t : A ` p : Id(A, s, t)
` s ≡ t : A

Because the conclusion elides the metavariable p, it will not record the fact that a variable may have
been used in the derivation of the fourth premise. Consequently, we cannot tell what variables ought to
occur in the context just by looking at the judgement. As it turns out, variables elided by derivations of
equations are the only culprit, and strengthening can be recovered by modifying equality judgements so
that they carry additional information about usage of variables in the form of assumption sets.

∗This material is based upon work supported by the U.S. Air Force Office of Scientific Research under award numbers
FA9550-17-1-0326, FA9550-21-1-0024, and 12595060.
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The context-free version of equality reflection is

CF-Eq-Reflect
` A type ` s : A ` t : A ` p : Id(A, s, t)

` s ≡ t : A by {|p|}

Note how the assumption set in the conclusion records dependence on p. Instead of recording the entire
term p, it suffices to record the assumption set {|p|}, which is obtained by traversing the term p and
collecting free variables and metavariables occurring in subterms and in sub-assumption sets of p.

As a consequence of the modification to the structure of equality judgements the conversion rule
needs to be adapted.

CF-Conv-Tm
` 𝑡 : 𝐴 ` 𝐴 ≡ 𝐵 by 𝛼

` κ(𝑡, 𝛼 ∪ {|𝐴|}) : 𝐵

The assumption set 𝛼 used in the derivation of the type equality as well as the assumptions {|𝐴|} used to
construct the type 𝐴 are recorded in the resulting term. In fact, the only places where annotations with
assumption sets enter the picture are via conversion terms κ(𝑡, 𝛽) and via proof irrelevant rules such as
CF-Eq-Reflect where a premise would go unrecorded in the conclusion without annotation.

Both traditional finitary type theories and context-free type theories enjoy a number of meta-theorems
such as admissibility of substitution, presuppositivity, and inversion principles. We prove that strength-
ening holds for context-free type theories.

To ensure that the formalism of context-free type theories derives the same judgements as traditional
finitary type theories up to annotations we provide translations in both directions. Translating from the
context-free setting to the traditional is simple enough: move the annotations on metavariables and free
variables to metavariable extensions and contexts, elide the conversion terms, and delete the assumption
sets. The transformation from traditional theories to context-free theories requires annotation of variables
with typing information, insertion of conversions, and reconstruction of assumption sets.

We prove that both of the translations respect derivability.
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Guarded recursion [7] is a technique for adding a fix-point combinator to type theory, guard-
ing the recursive call by a modality .κ to ensure productivity of the unfolding. It has been
established that type theories with guarded recursion and multiple clocks allow for encoding
coinductive types in type theory [1]. Work in this area has until now focused mainly on basic ex-
amples of coinductive types such as streams and the coinductive lifting monad, but much of the
interest in coinduction comes from modelling processes, often non-deterministic or probabilistic
ones. Representing such coinductive types is difficult because even presenting the functor for
which they are final coalgebras involve constructions such as finite powersets that are difficult
to represent in type theory. This talk presents a model of a cubical type theory combining
multiclocked guarded recursion with higher inductive types (HITs), in which a wide range of
coinductive types needed for representing processes can be defined using representations of func-
tors such as the finite powerset functor as HITs. The main technical contribution that makes
this encoding work, is the observation that HITs quantified over the object of clocks support an
induction principles similar to that original HIT. As a special case we study the type of labelled
transition systems and show that path equality for this type coincides with bisimilarity. The
work presented in this talk is based on the manuscript [4].

The Type Theory Clocked Cubical Type Theory (CCTT) is an extension of Cubical Type
Theory (CTT) [2] with guarded recursion and quantification over clocks. CTT is itself a variant
of dependent type theory where the identity type has been replaced by a type of paths, allowing
for a computational interpretation of univalence and other extensionality principles.

CCTT also includes guarded recursion using a family of modalities, .κ, indexed by clock
labels κ : clock. Contexts can be extended with fresh clock labels, and clocks can be abstracted
both in types (∀κ.) and in terms, in the style of Π types. This allows for a controlled elimination
of . in the form of a type equivalence ∀κ. .κA ' ∀κ.A. Using this in combination with guarded
recursive types, one can encode coinductive types [1]. For example, to define a type of streams,
first define the guarded recursive type of guarded streams satisfying Strκ ' N × .κStrκ using
the fixed point combinator, then take Str

def
= ∀κ.Strκ. Using the fixed point combinator we can

show that Str is the final coalgebra of N×−, and in particular satisfies Str ' N× Str.
Combining this with higher inductive types (HITs) we can encode also many of the coinduc-

tive types used for modelling non-deterministic processes. For example, recall that the type LTS
of finitely branching transition systems with labels in A can be encoded as the final coalgebra
of Pf(A×−). Here Pf is the finite powerset functor, which can be defined as a HIT [3]. We can
again define LTS by first considering the guarded recursive type LTSκ satisfying the equation
LTSκ ' Pf(A× .κLTSκ), and then taking LTS

def
= ∀κ.LTSκ. We also need to impose a restriction

on the collection labels, namely that the canonical map A → ∀κ.A is an equivalence.
To verify the correctness of these two example encodings, we calculate as follows:

Str ' ∀κ.(N× .κStrκ) LTS ' ∀κ.Pf(A× .κLTSκ)

' ∀κ.N× ∀κ.Strκ ' Pf(∀κ.A× ∀κ.LTSκ)
' N× Str ' Pf(A× LTS)

mbkr, mogel, avez@itu.dk
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Induction under clock quantification In both of the above cases, the crux of the matter
is an interaction of clock quantification and the inductive type formers. To express this in type
theory we introduce an induction principle allowing us to consider just elements of the form
λκ.con(t, a, r) when constructing a map out of ∀κ.H [κ]. For instance, we have the following:

Γ, Y : ∀κ.Pf(A [κ]) ` Q(Y ) type Γ ` X : ∀κ.Pf(A [κ])
Γ, x : ∀κ.A [κ] ` u{−}(x) : Q(λκ.{x [κ]}) . . .

Γ, x, x′ : ∀κ.Pf(A [κ]), y : Q(x), y′ : Q(x′) ` u∪(x, x
′, y, y′) : Q(λκ.x [κ] ∪ y [κ])

Γ, x : ∀κ.Pf(A [κ]), y : Q(x), i : I ` uidem(x, y, i) : Q(λκ.idem(x [κ], i))

[
(i = 0) 7→ u∪(x, x, y, y)
(i = 1) 7→ y

]
Γ ` indclockPf

(u{−}, u∪, uidem, . . . , X) : Q(X)

Here {−} is the singleton set constructor and idem : Π(x : Pf(∀κ.A [κ])). x ∪ x = x is
the path constructor for idempotency of binary union, and the cases for the remaining con-
structors are left out. The rule supports the obvious β rules of computing on e.g. input of
the form λκ.{a [κ]}. As a special case, this principle can be used to construct a canonical
map ∀κ.Pf(X) → Pf(∀κ.X). Similarly, one can construct a map in the opposite direction by
Pf -recursion. A second application of these principles then shows that these maps are quasi
inverse, meaning in particular that the types are equivalent.

This style of induction is general enough to apply also to truncations and pushouts, proving
in a similar fashion that these constructions also commute with quantification over clocks. The
case of truncations is particularly important, as it allows us to prove that ∀κ.∃x : X.Q(x) ' ∃x :
X.∀κ.Q(x) whenever X ' ∀κ.X. Here ∃ is encoded as the composition of Σ and propositional
truncation [9]. For example, the notion of bisimilarity for LTS uses the notion of simulation
defined as R(x, y) implying

Π(x′ : LTS, a : A). (a, x′) ∈ unfold(x) → ∃y′ : LTS. ((a, y′) ∈ unfold(y))×R(x′, y′).

Bisimilarity can then be defined as a coinductive type via guarded recursion, using the fact that
existential quantification over LTS commutes with universal quantification over clocks. We have
proved that bisimilarity for LTS coincides with path equality. The proof is based on a similar
result for the guarded recursive LTSκ proved in previous work [6].

Traditionally type theories with guarded recursion implemented as a family of .κ modalities
has included a clock irrelevance axiom. One might wish for such an axiom in our case, since it
would free us from the obligation of requiring a clock irrelevant set of labels, and would include
the equivalence N ' ∀κ.N. Apart from the encoding of coinductive types, the result we have
presented can be viewed as a step towards showing that a type theory with this axiom could
support many HIT’s. This by itself is not sufficient for the encoding theorem however, which
mirrors the results in [1].

The model A model of the theory presented here can be constructed in the Orton-Pitts frame-
work [8] for modelling cubical type theory in a topos. Presheaf models of clocked type theory
have been constructed previously [5], and such models extend to cubically valued presheaves.
To model cubical type theory all type constructors must have associated constructions for com-
position structures. We have given general conditions that allow for such constructions for
operators like .κ. In this model the universal quantification over clocks can be described as a
natural number indexed limit, and the structure maps are trivial in the cube component. The
fact that HITs are defined in such a way that the kind of constructor cannot be changed by
such maps then allows us to validate a general induction principle in the style of the rule above.
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Introduction. Approximation Fixpoint Theory (AFT) is an abstract lattice-theoretic frame-
work originally designed to unify semantics of non-monotonic logics [9]. Its first applications
were on unifying all major semantics of logic programming [25], autoepistemic logic (AEL)
[18], and default logic (DL) [20], thereby resolving a long-standing issue about the relationship
between AEL and DL [14, 10, 11]. AFT builds on Tarski’s fixpoint theory of monotone op-
erators on a complete lattice [23], starting from the key realisation that, by moving from the
original lattice L to the bilattice L2, Tarski’s theory can be generalized into a fixpoint theory
for arbitrary (i.e., also non-monotone) operators. Crucially, all that is required to apply AFT
to a formalism and obtain several semantics is to define an appropriate approximating operator
L2 → L2 on this bilattice; the algebraic theory of AFT then directly defines different types of
fixpoints that correspond to different types of semantics of the application domain.

In the last decade, AFT has seen several new application domains, including abstract ar-
gumentation [22], extensions of logic programming [19, 1, 8, 15], extensions of autoepistemic
logic [26], and active integrity constraints [4]. Around the same time, also the theory of AFT
has been extended signitificantly with new types of fixpoints [6, 7], and results on stratifica-
tion, [27, 5], predicate introduction [28], and strong equivalence [24]. All of these results were
developed in the highly general setting of lattice theory, making them directly applicable to all
application domains, and such ensuring that researchers do not “reinvent the wheel”.

Given the success and wide range of applicability of AFT, it sounded natural to formalise this
theory in the Coq theorem prover. In this work we report on the first steps of this endeavour.

AFT in a nutshell. AFT studies fixpoints of operators O : L→ L, where 〈L,≤〉 is a lattice,
through operators approximating O. These operators work in the bilattice L2 = 〈L× L,≤p〉,
where the precision order ≤p is defined as (x, y) ≤p (u, v) if x ≤ u and y ≥ v.

Intuitively, a pair (x, y) ∈ L2 approximates elements in the interval [x, y] = {z ∈ L | x ≤
z ≤ y}. We call (x, y) ∈ L2 consistent if x ≤ y, i.e., if [x, y] is non-empty. The set of consistent
elements is denoted by Lc. Pairs (x, x) are called exact, since they only approximate x. If (u, v)
is consistent and (x, y) ≤p (u, v), then [u, v] ⊆ [x, y], i.e., (x, y) approximates all elements that
(u, v) approximates. We say that (u, v) is more precise than (x, y).

An operator A : L2 → L2 is an approximator of O if it is ≤p-monotone and has the property
that A(x, x) = (O(x), O(x)) for all x ∈ L. As usual in AFT, we often restrict our attention
to symmetric approximators: approximators A such that, for all x and y, A(x, y)1 = A(y, x)2.
AFT defines the following fixpoints of A in order to study fixpoints of O.

• A partial supported fixpoint of A is a fixpoint of A.
• The Kripke-Kleene fixpoint of A is the ≤p-least fixpoint of A.
• A partial stable fixpoint of A is a pair (x, y) where x = lfp(A(·, y)1) and y = lfp(A(x, ·)2).
A(·, y)1 denotes the function L→ L : z 7→ A(z, y)1, and analogously for A(x, ·)2.

• The well-founded fixpoint of A is the least precise partial stable fixpoint of A.

∗This work was partially supported by Fonds Wetenschappelijk Onderzoek – Vlaanderen (project G0B2221N).
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Our formalisation. Our aim is to formalise AFT in Coq without using any axioms – in
particular, by following a constructive development of AFT. This is a natural choice, since an
important motivations for studying fixpoints in computer science is their computability.

Most AFT proofs are by transfinite induction, and we chose to follow the published results
closely. We define a type Ordinal of (unbounded) ordinals as a record type containing a Type,
an equivalence relation eq (defined equality), a distinguished element zero, a successor function
succ and a strict total order lt that is well-founded and compatible with eq. We require succ x

to be the least element strictly greater than x, and that we can decide whether an element is
of the form succ x for some x; the elements for which this does not hold are called limits.

Intuitively, the elements of o:Ordinal are the ordinals smaller than o. For sanity check, we
show that the natural numbers form an ordinal, that we can add ω to an ordinal, and that we can
build the type of all polynomials in ω (with support list nat). If o:Ordinal, then we can prove
properties of all elements of o by transfinite induction. Since we work with defined equality, we
need to include a case showing that the property being proved is stable under equality. We do
not deal with arithmetic on ordinals, since this is immaterial for our development.

(Complete) lattices are similarly defined as a record type consisting of a carrier type C with
an equivalence relation, a partial order, and an operator lub:(C → Prop) → C computing least
upper bounds. Requiring least upper bounds to be computable restricts the kind of lattices
that we can define; still we show that we capture e.g. powerset lattices (which appear in all
applications of AFT so far). We also define an operator BiLattice : Lattice → Lattice. Given
an operator O : L → L, we inductively define a (O-)chain as a predicate over L that is closed
under applications of O and lubs. We prove that, if O is monotonic, then the lub of any chain
is an element of the chain, and it is the least fixpoint (lfp) of O (Knaster–Tarski theorem).

AFT provides an alternative characterisation of lfps using so-called O-inductions. Given an
operator O : L→ L, y ∈ L is an O-refinement of x if x ≤ y and y ≤ x ∨O(x). An O-induction
is a transfinite sequence i such that iη+1 is an O-refinement of iη and iη = lub{iη′ | η′ < η}
for every limit ordinal η. An O-induction is terminal if there is an ordinal η such that the only
refinement of iη is iη. We prove that every terminal O-induction converges to the least fixpoint
of O, and, conversely, that an O-induction that reaches a fixpoint of O is terminal.

Finally, we formalise the notions of approximator and the four types of fixed points defined
earlier, and prove their main properties. The whole development can be found at https:

//doi.org/10.5281/zenodo.4893264.

Discussion. The main challenges encountered so far have to do with our choice to work
constructively (without adding any axioms to Coq), which required adapting some proofs in
AFT that assume decidability of equality on the lattice.

Several results in AFT require the existence of a “large enough” ordinal for a given lattice.
Since we have not been able to construct this ordinal from the lattice, we have defined a notion
of “large enough” ordinal, and explicitly add it as a hypothesis when needed. In this way, we
choose to accept its existence as a postulate, or prove it using classical logic.

Related work. Transfinite induction has been formalised previously [21, 2, 12, 13, 17], in
some cases with a proof of the Knaster–Tarski theorem. Some of these works are based on
classical set theory; others formalise ordinals in a way that we found cumbersome to use, which
led us to defining our own. The CoLoR library [3, 16] includes a formalisation of the Knaster–
Tarski theorem similar to ours. To the best of our knowledge, AFT has not been formalised
before.
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1 Introduction

Homotopy type theory [14] (HoTT) is a vibrant research field in contemporary mathematics.
It aims at providing a foundation of mathematics, extending Martin-Löf type theory with the
central notions of homotopy level and univalence. These concepts establish a tight connection
between types and homotopy spaces. Hence, they allow to formally prove classical results of
algebraic topology in a novel, synthetic way. Conversely, the connection provides a novel and
insightful view of type theory and its models.

The synthetic approach to homotopy theory provided by HoTT is very useful, allowing the
results to be invariant under equivalences, but has also drawbacks: properties relying on more
than just the related homotopy type cannot be expressed directly in HoTT. An important case
is the concept of semisimplicial types, whose definition is so far elusive in HoTT. Voevodsky
defined a special Homotopy type system [15] (HTS) as a formal theory in which to discuss
constructions that require access to non-homotopy-invariant notions, in particular, the con-
struction of said semisimplicial types. A construction of semisimplicial types in a sort of HTS
is described by Herbelin [8].

2 Two-level Type Theory

Two-level type theory [2] (2LTT) is envisioned to be a variant of HTS. 2LTT is composed of
two separate levels of types: the outer level is Martin-Löf type theory plus the uniqueness of
identity proofs [13] (UIP), which states that all the paths with the same endpoints are equal;
the inner level is, in essence, homotopy type theory. These levels are related by a conversion
function from the inner to the outer level that preserves context extensions.

The paper “Two-Level Type Theory and Applications” [2] proposes a semantics for 2LTT
based on categories with families [7], which justifies reasoning inside the inner system with the
full power of homotopy type theory, and reasoning about the inner system within the outer
system to circumvent a number of expressive limits of the former. With this approach it is
possible to study properties of homotopy type theory syntactically in the two-level system,
and, by conservativity [4], to reflect them back in the HoTT world. Among the applications of
this approach there are the results on Reedy fibrant diagrams [2], the Univalence Principle [1],
and internal ∞-categories with families [9], which have been suggested as a way to overcome
known difficulties one encounters when formalising type theory in type theory.

In summary, the motivation and the significance of this approach are that, despite the in-
trinsic expressive and proving power of homotopy type theory, a wide range of results rely
on meta-reasoning and meta-principles, which cannot entirely be formalised within the the-
ory. The two-level approach formalises these meta-principles in a theory which is compatible
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both technically and philosophically with homotopy type theory, allowing for their mechanisa-
tion. However, the syntax of 2LTT is just sketched in [2] and its proof theory is still largely
unexplored.

3 Syntax

In this contribution we propose a system of inference rules for 2LTT with an infinite hierarchy
of Tarski-style universes as uniform constructions [11]; the rules allow us to define the syntax
in detail, clearly illustrating the behaviour of the two levels, and how they interact. In contrast
with [2], we pay particular attention to the definition of Tarski-style universes, following the
guidelines of [11]: other than the function Eli, which maps the codes A : Ui into types Eli(A) type
and is present in [2], we introduce a function lifti mapping terms of one universe A : Ui into
terms of the next one lifti(A) : Ui+1. In [2], the lift operation is not present, and the universes
are cumulative. In our system, those two functions are related by the following rule

Γ ` A : Ui
U−lift

Γ ` Eli+1(lifti(A)) ≡ Eli(A) type

stating that El and lift commute. The same happens for inner types; indeed, A type means that
A is an outer type, while A typeo means that A is an inner type. This emphasises another
difference between our approach and the 2LTT paper: we do not have a size for types, whereas
in [2] it is specified as A typei or A typeoi : if A : Ui, then Eli(A) typei. Moreover, besides the
conversion function c from inner to outer types introduced in [2], we define a conversion function
c′ from inner to outer codes, i.e., terms of the universes: if A : Uo

i , then c′(A) : Ui. It is required
that El, lift, c and c′ commute. We formalise the fact that the conversion function preserves
context extension by introducing a notion of equivalence between contexts, which is not present
in [2], together with the rule

Γ ` A typeo
≡−ctx−EXT

Γ, x : A ctx ≡ Γ, y : c(A) ctx

where, if A typeo, then c(A) type.
Then, we define a generalisation of the notion of category with families which allows us

to interpret our formalisation of the two levels and the Tarski-style universes, called two-level
model, together with a notion of morphism between models. We are aiming to show the com-
patibility of our system with the (almost) standard semantics for 2LTT by proving an initiality
result; this will essentially extend recent work for Martin-Löf type theory by Brunerie, de Boer,
Lumsdaine, and Mörtberg [3, 10, 6]. To this end, we define the syntactical two-level model by
quotienting the syntax, similar to [12, 5], and aim to prove that it is the initial object in the
category of models.

Our long term goal is to develop the basis for a proof assistant that implements 2LTT
and allows one to use additional inner and outer axioms, some of which have been already
suggested [2], to formalise in parallel the inner and outer levels, and their relations.
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We develop an approach to choice principles and to their bar-induction contrapositive princi-
ples, as extensionality schemes connecting an “operational” or “intensional” view of respectively
ill-foundedness and well-foundedness properties to an “idealistic”, “observational” or “exten-
sional” view of these properties. In a first part, we classify and analyse the relations between
different intensional definitions of countable ill-foundedness and countable well-foundedness in-
volving Bar Induction, Dependent Choice, Kőnig’s Lemma and the Fan Theorem. In a second
part, we integrate the Ultrafilter Theorem and the general axiom of choice to the picture and
develop, for A a domain, B a codomain and T a predicate “filtering” the finite approximations
of functions from A to B, a generic choice axiom GDCABT and, contrapositively, a generic
bar induction principle GBIABT which uniformly generalise the previously mentioned schemes
in the sense that, writing N and Bool for the types of natural numbers and Booleans values
respectively, we have:

• GDCABR> intuitionistically captures the strength of the general axiom of choice expressed
as ∀aA ∃bB R(a, b) → ∃α ∀aR(a, α(a))), where R> is an “unconstraining” filter deriving
pointwise from the relation R;

• GDCABoolT intuitionistically captures the Boolean Prime Ideal Theorem and Ultrafilter
Theorem; contrapositively, GBIABoolT intuitionistically captures Gödel’s completeness
theorem in the form validity implies provability;

• GDCNBT intuitionistically captures respectively the axiom of dependent choice; contra-
positively, GBI NBT intuitionistically captures usual bar induction;

• GDCNBoolT captures the choice strength of Weak Kőnig’s Lemma, and, up to weak clas-
sical reasoning, Weak Kőnig’s Lemma itself; contrapositively GBI NBoolT intuitionistically
captures the choice strength of the Weak Fan Theorem.

For classifying the countable case, we use the definitions in the next two tables, which all
apply to a predicate T over the set A∗ of finite sequences of elements of a given domain A. Our
focus being purely logical, we do not impose any arithmetical restriction (such as decidability)
on the predicate.

We use the letter a to range over elements of A, the letter u to range over the elements of
A∗, n to range over the natural numbers N and α to range over functions from N to A. The
empty sequence is denoted 〈〉 and sequence extension u ? a.

Equivalent concepts on dual predicates
T is a tree T is monotone

∀u ∀a (u ? a ∈ T → u ∈ T ) ∀u ∀a (u ∈ T → u ? a ∈ T )
T is progressing T is hereditary

∀u (u ∈ T → ∃a (u ? a ∈ T )) ∀u (∀a (u ? a ∈ T )→ u ∈ T )



Dual concepts on dual predicates
ill-foundedness-style well-foundedness-style

Closure operators
pruning of T hereditary closure of T

νX.λu.(u ∈ T ∧ ∃a (u ? a ∈ X)) µX.λu.(u ∈ T ∨ ∀a (u ? a ∈ X))

Intensional concepts relevant in the general case
T is a spread T is barricaded1

〈〉 ∈ T ∧ T progressing T hereditary→ 〈〉 ∈ T
T is productive T is inductively barred
〈〉 ∈ pruning of T 〈〉 ∈ hereditary closure of T
Intensional concepts relevant in the case of finite branching

T has unbounded paths T is uniformly barred
∀n∃u (|u| = n ∧ ∀v (v ≤ u→ v ∈ T )) ∃n∀u (|u| = n→ ∃v (v ≤ u ∧ v ∈ T ))

T is staged infinite T is staged barred1

∀n∃u (|u| = n ∧ u ∈ T ) ∃n∀u (|u| = n→ u ∈ T )
Extensional concepts

T has an infinite branch T is barred
∃α ∀u (u initial segment of α→ u ∈ T ) ∀α ∃u (u initial segment of α ∧ u ∈ T )
1not being aware of an established terminology, we use here our own terminology

In their common formulations, choice and bar induction principles (in our case a tree-based
form of Dependent Choice, Bar Induction, Kőnig’s Lemma and the Fan Theorem) are expressed
as connecting one of the intensional concepts (spread, inductively barred, staged infinite and
uniformly barred respectively) to the corresponding single extensional concept.

Systematising existing literature, we clarify that the choice and bar induction principles
obtained by relying on each of the two intensional concepts relevant to the general case (resp.
relevant to the finite case) of a given column are equivalent altogether and that both pairs of
pairs (general case and finite case) are equivalent on their common (finite case) intersection.

Then, we take the definitions of inductively barred, productive, having an infinite branch
and barred as references and generalise them to the non-necessarily countable case leading
to the definitions of GDCABT and GBIABT below where ↓ T and ↑ T denote respectively
the downwards closure by restriction and upwards closure by extension of a predicate T over
(A×B)∗ wrt set inclusion, and ≺ is about finitely approximating a function.

Dual concepts on dual predicates
ill-foundedness-style well-foundedness-style

Intensional concepts
T A-B-approximable from u T inductively A-B-barred from u

νX.λu. (u ∈↓T ∧ ∀ a /∈ dom(u)∃b (u ? (a, b)) ∈ X) µX.λu. (u ∈↑T ∨ ∃ a /∈ dom(u)∀b (u ? (a, b)) ∈ X)

Extensional concepts
T has an A-B-choice function T is A-B-barred

∃α ∈ (A→ B)∀u (u ≺ α→ u ∈ T ) ∀α ∈ (A→ B) ∃u (u ≺ α ∧ u ∈ T )

Dual axioms
Generalised Dependent Choice (GDCABT ) Generalized Bar Induction (GBIABT )

T A-B-approximable from 〈〉 implies T has an A-B-choice function T A-B-barred implies T inductively A-B barred from 〈〉

The generalisations GDCABT and GBIABT satisfy the properties given in the introduction
but note that having constraints on A, B and T is important. For instance, a diagonalisation
argument shows that GDC BoolNNT and GBI BoolNNT are inconsistent for a predicate T imposing
an injectivity requirement on the choice function.

More details and a bibliography can be found at https://hal.inria.fr/hal-03144849.
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Abstract

An open question in homotopy type theory, known as the problem of constructing
semisimplicial types, is whether one can define a function SST : N → Type1 such that
SST(n) is the type of all configurations of triangles and tetrahedra of dimension up to n.
We show in Agda that semisimplicial types can be constructed in any set-based internal
category with families that contains Σ, Π, and a universe. This means that, given a CwF
(Con,Ty, . . .) in type theory, we construct a function SSTc : N → Con.

This project is work in progress, with code available at github.com/jaycech3n/CwF.

Semisimplicial Types. Constructing semisimplicial types [Uni13, Her15] is an open problem
in homotopy type theory and, more generally, in dependent type theory without uniqueness of
identity proofs (UIP). It was first discussed between Voevodsky, Lumsdaine and others during
the Univalent Foundations special year at the IAS Princeton in 2012–13.

A semisimplicial type of dimension 2 is a tuple (A0, A1, A2), where A0 : Type is a type of
points, A1 : A0 → A0 → Type is a family of lines (for any two points), and A2 : (x y z : A0) →
A1 x y → A1 y z → A1 x z → Type is a family of triangle fillers (for any three points and three
lines forming a triangle). Similarly, a semisimplicial type of dimension n should be a tuple
(A0, . . . , An) which represents families of simplices of dimension at most n. The open problem
asks: can one can define a function SST : N → Type1 such that SST(n) is equivalent to the
(record/Σ-) type of such tuples (A0, . . . , An)?

Construction in Internal CwF’s. By an internal CwF, we mean a type Con : Type together
with families Sub : Con → Con → Type, Ty : Con → Type, Tm : (Γ: Con) → TyΓ → Type, and
all the components and equalities which are needed to define a category with families [Dyb95].
We say that such a CwF is set-based if Con, Ty, Sub, Tm are families of sets in the sense of
homotopy type theory, i.e. types satisfying UIP.

The goal of this project is to define, for any set-based internal CwF with Π and Σ-types and a
universe U , a function SSTc : N→ Con in Agda such that SSTc n is the context (A0 : U,A1 : A0 →
A0 → U, . . . , An : . . .).

Motivation: Connecting Open Problems. A second open problem, originally asked by
Shulman [Shu14], is whether homotopy type theory can internalize (“eat” [Cha09]) itself. More
concretely, the problem is to formalize the syntax of HoTT inside HoTT as a set-based CwF,
and to give interpretation functions which send the syntax to actual types and their elements
in the “obvious” way—for example, a context in the CwF should be interpreted as the nested
Σ-type of all its components. For a detailed discussion, see the introduction of [Kra21].

Our current project shows how a solution of this question would give rise to a solution to
the problem of constructing semisimplicial types, as claimed by Shulman [Shu14]: composing
SSTc with the interpretation Con→ Type1, we would get the desired function N→ Type1.

∗This work is supported by the Royal Society, grant reference URF\R1\191055.
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Related Work. We are aware of two different scripts which, when given a number n as
input, produce valid Agda code for SST(n)—one script using Haskell [Kra14] and one using
Python [Bru]. Our function SSTc can be seen as a dependently typed version of such a script,
with Agda replaced by an internal CwF and Haskell/Python replaced by Agda. Since Haskell
and Python simply produce strings while SSTc is required to type-check, the latter is significantly
more difficult to define and requires several new ideas.

Our work has analogies with the construction of semisimplicial types in Voevodsky’s homotopy
type system [Voe13] or 2LTT (2-level type theory) [ACK16, ACKS19]. Here, Agda plays the
role of the outer theory1 and the internal CwF the role of the inner (“fibrant”) one. However,
our internal CwF is too minimalistic (e.g. does not contain finite types) to mimic the direct
construction of [ACK16]. Moreover, 2LTT allows one to first formulate a type in the outer
theory and prove its fibrancy afterwards, a strategy which is not possible in our setting.

It is known that semisimplicial sets can be constructed in homotopy type theory, i.e. we can
define a function SST0 : N→ Type1 which only considers sets of points, sets of lines, and so on.
Although our CwF’s are based on sets, this is unrelated; since our CwF’s are not assumed to
have an identity type, the notion of truncatedness does not exist for internal types. The fact
that Con and TyΓ are sets corresponds to the fact that judgmental equality is proof-irrelevant.

Formalization of the Construction. Using the HoTT-Agda library [SH12] we formalize set-
based CwF’s as records with fields Con, Sub, Ty, Tm, the usual operations thereon, and equations
given by their usual presentation as a generalized algebraic theory (see e.g. Fig. 1 of [Kra21]).
Since we are motivated by the goal of internalizing constructions in generic homotopy type theory,
where many CwF’s (such as the formalized syntax proposed by Altenkirch and Kaposi [AK16])
do not satisfy additional definitional equalities, we avoid any use of rewriting pragmas. Our
CwF’s are further equipped with internal type formers Π̂ and Σ̂, as well as a family U of base
types (polymorphic over contexts Γ) together with decoding function el : TmΓU → TyΓ. We
then define SSTc 0 := U and SSTc (n+ 1) :=

(
SSTc n , (Mn →̂ U)

)
by mutual induction with

the “matching object” M : (n : N)→ Ty (SSTc n), where →̂ is the function type in the internal
CwF. The main difficulty lies in defining the type (Mn) of ∂∆n+1-shaped tuples indexed over
SSTc n.

A high-level description of our approach to this is as follows. We define Mn := Sk
(
n +

1, n,
(
n+2
n+1

))
, where

Sk : (b h t : N)→ Ty (SSTc h) for 0 ≤ h < b, 1 ≤ t ≤
(
b+1
h+1

)
encodes, as a nested internal Σ̂-type Sk b h t, the subfunctor of the representable functor ∆+[b]2

which omits all face maps [i]→ [b] for i > h, as well as those face maps [h]→ [b] above the t-th
(ordered via a bijection ϕ : Fin

(
b+1
h+1

) ∼= ∆+([h], [b])). The intuition is that Sk b h t presents the
partial h-dimensional boundary of the b-simplex given by “shape” (b, h, t). The point of this is
to allow us to define, by induction on h and t,

Sk b h t := Σ̂[σ : Sk b h′ t′]
(
Ah(inter σ ϕ(t))

)
,

where (h′, t′) is the lexicographic predecessor of (h, t) and inter σ f picks out the subtuple of
σ corresponding to the face f . This intersection function inter is, again, to be constructed by
induction on the indices b, h, t. This is work in progress.

1However, we do not assume UIP in Agda, as this would make the connection with type theory eating itself
impossible. The strictness that seems to be needed to construct semisimplicial types is satisfied in our case
because the internal CwF is set-based.

2∆+ := ∆ without degeneracies, i.e. the category of finite non-empty sets and strictly increasing functions.
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Abstract

We study the semantics of an untyped λ-calculus equipped with operators representing
read and write operations from and to a global state. We adopt the monadic approach to
model side effects and treat read and write as algebraic operations over a computational
monad. We introduce an operational semantics and a type assignment system of intersec-
tion types, and prove that types are invariant under reduction and expansion of term and
state configurations, and characterize convergent terms via their typings.

Since Strachey and Scott’s work in the 60’s, λ-calculus and denotational semantics, together
with logic and type theory, have been recognized as the mathematical foundations of program-
ming languages. Nonetheless, there are aspects of actual programming languages that have
shown to be quite hard to treat, at least with the same elegance as the theory of recursive
functions and of algebraic data structures; a prominent case is surely side-effects.

In [Mog91] Moggi proposed a unified framework to reason about λ-calculi embodying various
kinds of effects, including side-effects, that has been used by Wadler [Wad92, Wad95] to cleanly
implement non-functional aspects into Haskell, a purely functional programming language.
Moggi’s approach is based on the categorical notion of computational monad: instead of adding
impure effects to the semantics of a pure functional calculus, effects are subsumed by the
abstract concept of “notion of computation” represented by the monad T . To a domain A of
values it is associated the domain TA of computations over A, that is an embellished structure
in which A can be merged, and such that any morphism f from A to TB extends by a universal
construction to a map fT from TA to TB.

Monadic operations of merging values into computations, i.e. the unit of the monad T ,
and of extension, model how morphisms from values to computations compose, but do not tell
anything about how the computational effects are produced. In the theory of algebraic effects
[PP02, PP03, Pow06], Plotkin and Power have shown under which conditions effect operators
live in the category of algebras of a computational monad, which is isomorphic to the category
of models of certain equational specifications, namely varieties in the sense of universal algebra
[HP07].

In [dT20] we have considered an untyped computational λ-calculus with two sorts of terms:
values denoting points of some domain D, and computations denoting points of TD, where T
is some generic monad and D ∼= D −→ TD. The goal was to show how such a calculus can be
equipped with an operational semantics and an intersection type system, such that types are
invariant under reduction and expansion of computation terms, and convergent computations
are characterized by having non-trivial types in the system.

Here, we extend our approach and consider a variant of the state monad from [Mog91] and a
calculus with two families of operators, indexed over a denumerable set of locations: get`(λx.M)
reading the value V associated to the location ` in the current state, and binding x to V in M ;
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set`(V,M) which modifies the state assigning V to `, and then proceeds as M . This calculus,
with minor notational differences, is called imperative λ-calculus in [Gav19].

As a first step, we construct a domain D that is isomorphic in a category of domains to
D −→ SD, where S is the monad of partiality and state from [DGL17]. Then, to define the
operational semantics, we consider an algebra of states which is parametric in the values, that
are denoted by value-terms of the calculus. State terms are equated by a theory whose axioms
are standard in the literature (see e.g. [Mit96], chap. 6) and are essentially, albeit not literally,
the same as those ones for global state in [PP02].

Operational semantics is formalized by the evaluation or big-step relation (M, s) ⇓ (V, t),
where M is a (closed) computation, V a value and s, t state-terms. Equivalently, we define in
the SOS style a reduction or small-step relation (M, s) −→ (N, t) among pairs of computations

and state-terms, which we call configurations, such that (M, s) ⇓ (V, t) if and only if (M, s)
∗−→

([V ], t), where [V ] is the computation trivially returning V .
Types and type assignment system are derived from the domain equation defining D and

SD, following the method of domain logic in [Abr91]. Type and typing rule definitions are
guided along the path of a well understood mathematical method, which indicates both how
type syntax and the subtyping relations are constructed and how to shape type assignment
rules. The so obtained system is an extension of Curry style intersection type assignment
system: see [BDS13] Part III.

The first result we obtain is that in our system types are invariat under reduction and
expansion of configurations. This is the key step to the main theorem of this work, that is the
characterization of convergence. We say that a program, namely a closed computation term,
converges if it evaluates to a value and a final state, whatever the initial state is.

In analogy with the lazy lambda-calculus, where a term converges if and only if is typable
by ω −→ ω in a suitable intersection type system, we show that a closed M converges if and only
if it is typable by ω −→ ω × ω. Consequently, type-checking in our system is undecidable.

The article is available on arXiv: [dT21].
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1 Introduction

The Agda Universal Algebra Library (UALib) is a library of types and programs (theorems
and proofs) formalizing the foundations of universal algebra in dependent type theory using
the Agda programming language and proof assistant. The UALib now includes a substantial
collection of definitions, theorems, and proofs from universal algebra and equational logic and
as such provides many examples that exhibit the power of inductive and dependent types for
representing and reasoning about general algebraic and relational structures.

The first major milestone of the UALib project was the completion of a formal proof of
Birkhoff’s HSP theorem, which we achieved in January of 2021. To the best of our knowledge,
this is the first time Birkhoff’s theorem has been formulated and proved in dependent type
theory and verified with a proof assistant.

In this presentation of the UALib we discuss some of the more challenging aspects of formaliz-
ing universal algebra in type theory and the issues that arise when attempting to constructively
prove some of the basic results in that area. In explaining how some of these challenges may be
overcome, we hope to demonstrate that dependent type theory and Agda, despite the demands
they place on the user, are accessible to working mathematicians who have sufficient patience
and a strong desire to formally and constructively codify and verify their work.

After a sobering description of the initial and sometimes painful stage of learning how to
do mathematics in type theory and Agda, we hope to make a compelling case for investing in
these technologies. Indeed, we are excited to share the gratifying rewards that come with some
mastery of type theory and interactive theorem proving.

2 Organization and contributions

In this presentation we limit ourselves to key components of the UALib so that we have space to
discuss the more interesting type theoretic and foundational issues that arose when developing
these components and completing the first goal of the project (a machine-checked proof of
Birkhoff’s theorem).1 We briefly show how homomorphisms, terms, and subalgebras are defined
in the UALib and then discuss inductive and dependent types used to represent free algebras and
equational classes of algebras (i.e., varieties). Finally, we present the formalization of Birkhoff’s
HSP theorem. The following subsections describe the organization of the presentation in more
detail.

1A comprehensive overview of the UALib is available in the form of detailed online documentation at
https://ualib.org, as well as in the recent series of papers [1, 2, 3].

https://ualib.gitlab.io
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://ualib.gitlab.io
https://ualib.gitlab.io
https://ualib.gitlab.io
https://ualib.gitlab.io
https://ualib.gitlab.io
https://ualib.gitlab.io
https://ualib.gitlab.io
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2.1 The type theory and logical foundations of Agda and UALib

First we recall the logical foundations of Martin-Löf type theory, with special emphasis on the
way it is formalized in Agda. After a quick review of Agda’s universe hierarchy, as well as
the classes of Sigma and Pi types, we discuss a family of concepts that play a vital role in all
mechanizations of mathematics using type theory; these are the related concepts of equality,
function extensionality, proposition extensionality, truncation and uniqueness of identity proofs.
We then describe our approach to relation types and quotient types, including our less standard
dependent relation types which are capable of representing relations of arbitrary arity, defined
over arbitrary collections of types.

2.2 Types for algebras, terms, and subalgebras

We describe the basic domain-specific types defined in the UALib. These include types for
algebraic signatures, general (universal) algebras, and product algebras (including products over
arbitrary classes of algebraic structures), congruence relations, and quotient algebras. Having
thus described the basic objects of study, we focus on relations between them manifested by
types for homomorphisms and homomorphic images. We then define the inductive type of
terms and mention the formal proof that the term algebra is absolutely free (i.e., it is the initial
object in the category of algebras). To conclude this section we define types for subalgebras,
including an inductive type representing subalgebra generation.

2.3 Types for varieties, free algebras, and Birkhoff’s theorem

Here we get to the main technicalities of formalizing nontrivial results in equation logic. We
define the “models” relation (|=) and the closure operators H, S, and P representing classes
of structures that are closed under homomorphic images, subalgebras, and arbitrary products,
respectively. We then present the quotient type that represents the (relatively) free algebra.

Finally, we recall the informal statement of Birkhoff’s theorem and assemble the components
required to formalize that theorem in type theory, and then briefly describe each step in the
path to the proof as it is formalized in the UALib.

3 Conclusion

We conclude with the most pressing open questions and considerations for future work on this
and related projects. In particular, we discuss the next phase of development in which we will
formalize notions of computational complexity theory in the UALib so that we can verify our
own results and those of others on the cutting edge of our field of mathematics research.
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Abstract

We introduce a concrete domain model for an extension of the quantum lambda calculus
λ◦
ρ with a fixpoint operator. A distinctive feature of λ◦

ρ is that it relies on density matrices
for describing both quantum information and probabilistic distributions over computation
states. It has been shown that there is a conservative translation from λ◦

ρ to the quantum
lambda calculus of Selinger and Valiron. In contrast to existing models for quantum lambda
calculi featuring recursion with intuitionistic arrows, our model is finite-dimensional and
does not need more than cones of positive matrices and affine arrows.

The design of functional programming languages for quantum computation has roots in the
seminal work of Selinger [Sel04], where quantum flow charts (QFCs) were introduced. QFCs
are (possibly recursive) first-order programs, whose denotational semantics is given in terms
of finite-dimensional structures. This approach has been subsequently extended in [SV06] to
accommodate higher-order programs. The obtained language, called quantum lambda calculus,
consists of a typed lambda calculus with quantum data but without recursion. Still, its de-
notational semantics is given in terms of finite structures. Almost a decade later, a series of
works [PSV14, CDVW19, CdV20] have addressed the problem of giving denotational semantics
to fixpoint operators for the quantum lambda calculus. Despite their differences, they rely on
infinite-dimensional structures to model recursive types and recursion, and functions that can
be used repeatedly (i.e., intuitionistic arrows).

In this work we explore a different design choice for adding recursion to quantum lambda
calculus that is linear-affine but still has a finite-dimensional model. Concretely, we extend
the quantum lambda calculus λ◦ρ [DC17] with a fixpoint operator but without intuitionis-
tic arrows. We remark that λ◦ρ has been shown equivalent [Bor19] to the one proposed by
Selinger&Valiron [SV06], but relies on a convenient presentation in terms of density matrices.
The denotational semantics of our language follows the approach of Selinger [Sel04]; conse-
quently, we interpret basic types as positive matrices with trace less than or equal to 1. Indeed,
a matrix whose trace is 1 represents a terminating program, while a matrix whose trace is
smaller than 1 represents a non-terminating program.

Figure 1 summarises the main features of the discussed approaches.
The λ◦ρ calculus has the usual terms of the lambda calculus, i.e. variables, lambda abstrac-

tions and application; additionally, it provides constructors for each quantum postulate, namely,
∗Partially supported by the French-Argentinian IRP SINFIN and the STIC-AmSud project Qapla’.
†The draft of the full paper can be found at http://mivnisky.github.io/qfixpoint.pdf.

http://mivnisky.github.io/qfixpoint.pdf
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Ref. Finite Affine Duplication fixpoint Higher order
[Sel04] X X
[SV06] X X
[PSV14] X∗ X X X

[CDVW19] X∗ X X X
[CdV20] X∗ X X X

Our proposal X X X X
∗ Affinity only for duplicable objects.

Table 1: Summary of related models for the quantum lambda calculus.

(1) ρn stands for an n-dimensional quantum state, which is represented by the density matrix
ρ; (2) Umt represents the application of the m-dimensional unitary operator U to the first m
qubits of t; (3) πmt corresponds to the measurement of the first m qubits of t; and (4) t⊗ r is
the tensor product of t and r. The term letcase◦ x = t in {r0, . . . , r2n−1} intuitively stands for a
probabilistic distribution over {r0, . . . , r2n−1}, where the probability associated with the term
ri comes from the measurement denoted by t, i.e., it is assumed that t corresponds to a mea-
surement that may produce 2n results, each of them with probability pi. Then, the distribution
associated with the letcase term can be expressed as a generalised density matrix

∑
i piri.

Types for λ◦ρ are given by A := n | (m,n) | A ( A, where n,m ∈ N. The type n stands
for the dimension of a density matrix, while (m,n) corresponds to a measurement of m qubits
over an n-qubit state (with m ≤ n), as formally stated by the interpretation function below.

JnK := Dn J(m,n)K := {M |M ∈
2m⊕
i=1

Dn and tr(M) ≤ 1}

JA( BK := {f | f positive in (JAK⊗ JBK)⊕ JBK}
We write Dn for the set of positive matrices of dimension 2n and trace less than or equal to
1. The operators ⊗ and ⊕ respectively stand for the tensor product and coproduct of density
matrices. The non-standard interpretation of arrows, i.e., (JAK⊗JBK)⊕JBK instead of JAK⊗JBK,
is motivated by the need of accommodating affine functions, i.e., functions f such that f(0) 6= 0.
We build upon to the standard Choi representation [Cho75] of a completely positive linear map
f as the positive matrix

χf :=

 f(E11) . . . f(E1n)
...

...
f(En1) . . . f(Enn)


where {Eij} is the canonical basis of Dn, and use the following affine extension

χf :=

 f(E11)− f(0n) . . . f(E1n)− f(0n)
...

...
f(En1)− f(0n) . . . f(Enn)− f(0n)

⊕ f(0n)
The left-hand-side expression in the definition of χf corresponds to the linear transformation,
while the right-hand-side represents the translation.

We show that this finite model is sound and suffices to interpret the fixpoint µx.t as the least
upper bound of a chain of approximations, i.e., as lim

n→∞
χnf (0) where f = λx.t and 0 denotes

the null matrix.
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Abstract

We provide a Coq/SSReflect formalization defining algebraic finite games of incomplete
information (generalizing Bayesian games) and proving an extended version of Howson’s
and Rosenthal’s theorem. This is our first step toward a decision theory library in Coq.

1 Introduction
Game theory provides a framework to model and study decision making among several agents.
It has been strongly studied in economics, and more recently in artificial intelligence. Formal-
izing results – that is, writing proofs that can be automatically verified – has been of recent
interest in this domain. Existing formalizations in game theory only concern games of complete
information (C-Games). We are developing a decision theory library for the Coq proof assis-
tant [7], which may benefit from C-Games-related libraries [12, 2] and/or particular formalized
results [13, 15], since a strategic game is a particular form of collective decision. For now, we
provide an extensible Coq implementation for finite simultaneous games of incomplete infor-
mation (I-Games), that is, games in an uncertain environment. We also formalize an extended
version of Howson’s and Rosenthal’s theorem (I-Game to polymatrix C-Game conversion), the
proof of which making it possible to validate our definitions.

We adopt an algebraic approach, using abstract utilities, beliefs and expectation operators.
Our formalization is able to encompass real-valued (probabilistic) Bayesian games, but also
I-Games with partially ordered preferences (e.g. with multicriteria utilities [4, 5]) or based on
various uncertainty theories (e.g. possibility theory [9]). We use the Coq feature of dependent
typing (e.g. to instantiate agents with different strategy spaces) to stay as general and as close
as possible to paper definitions, and work with MathComp/SSReflect library and tactics [14],
including its big operators library [3]. Our formalization is freely available on GitHub at
https://ppomco.github.io/coq-incomplete-games-rjcia2021/.

2 Algebraic Games of Incomplete Information (I-Games)
I-Games model situations where several agents have each to make a choice, without knowing
the real state of the world ω ∈ Ω. Agents’ payoffs depend on their choices, but also on the
state of the world. Each agent i has beliefs and preferences, and receives partial information
θi = τi(ω) about the real state of the world. Harsanyi [10] showed one can model those situations
depending on agents’ possible belief states (usually called "types") without making underlying
world states explicit. When knowledge is expressed as a probability and utilities are real-valued,
rational agents want to maximize their expected utility – they play a Bayesian game.

There are other ways to express and combine beliefs and preferences. Chu and Halpern [6] al-
gebraically generalize this approach (for a single decision maker), abstracting over domains and
expectation operators, which are encapsulated in an evaluation structure E = (W,U, V,⊕,⊗),
that we name eval_struct. W , U and V are domains for plausibility, utility and "weighted
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utility" values, respectively, and are (partially) ordered. ⊕ : V × V → V and ⊗ : W × U → V
are abstract expectation operators. We require ⊕ to be commutative, with a neutral element,
to use it as a big operator. We also require V to be decidable (eqType). Other conditions on
eval_structs are only semantic, and are needed neither for definitions, nor for proofs.

Each agent i is modeled by an evaluation structure Ei = (Wi, Ui, Vi,⊕i,⊗i), an utility
function ui : A × Θ → Ui (A =

∏
i∈N Ai is the space of action profiles, Θ =

∏
i∈N Θi that of

belief state profiles), and a plausibility distribution di : Θ → Wi (providing the confidence on
others’ beliefs states θ−i given her own belief state θi). If σ ∈

∏
i∈N (Θi → Ai) denotes the

action chosen by agents from their belief state, the Generalized Expected Utility is defined by:

GEU(i,θi)(σ) =
⊕

i
θ−i∈Θ−i

d(θ−i | θi)⊗i ui(σθ, θ) where σθ(i) = σi(θi) for all i ∈ N.

Finally, an I-Game simply is a dependent structure G =
(
N, (Ai,Θi, Ei, di, ui)i∈N

)
, where N

is the finite set of agents (players) and, for each agent i ∈ N , (Ai,Θi, Ei, di, ui) denote her
actions, belief states, evaluation structure, plausibility distribution and utility function.
Record I_game (player : finType) : Type :=

{ action : player -> finType;
b_state : player -> finType;
evalst : player -> eval_struct;
plausibility : forall i : player, profile b_state -> W (evalst i);
utility : forall i : player, profile action -> profile b_state -> U (evalst i); }.

Definition GEU : forall (player : finType) (g : I_game player) (i : player),
b_state g i -> iprofile (b_state g) (action g) -> V (evalst g i).

3 Generalizing Howson’s and Rosenthal’s theorem
Howson’s and Rosenthal’s theorem [11] provides a polymatrix C-Game with the same Nash
equilibria as any 2-players finite Bayesian game. We extend this theorem to any n-players
finite I-Games. This constructive proof is quite direct (apart from peculiarities related to the
dependently-typed style of the formalization). Our result is more general than Howson’s and
Rosenthal’s one since a) it holds for n ≥ 2 agents, b) it deals with any distribution-based
decision approach that an eval_struct encompasses, and c) we state equality of strategy
profile’s utilities in both games (thus, Nash equilibria correspondence is a corollary – as for any
other utility-based concept).

4 Conclusion
We formalized I-Games in the Coq proof assistant, generalizing Bayesian games and enabling
to model agents using abstract preferences, beliefs and expectation operators, that is, partially
ordered preferences and various uncertainty theories. It enables to instantiate Bayesian games,
but also possibilistic games [1] and to devise new incomplete game forms, e.g., multicriteria
game. Furthermore, we extended Howson’s and Rosenthal’s theorem to this algebraic structure
and to any number of agents. It gives us confidence in our formalization approach.

As further works, we propose to extend the frame of our model to fuzzy measures (capacities)
to encompass belief functions [8, 17] and rank-dependent utility [16] theories. Moreover, we aim
to formalize more decision theory results in Coq, in order to build a formal library of algorithmic
decision theory, that may benefit from existing works on (complete information) game theory.
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To a first approximation, type theory is the study of objects invariant under change of
context i.e. fibered connectives. Unfortunately, important features of models of type theory are
not fibered and this limits the utility of type theory as an internal language. To manage this
contradiction, a number of modal type theories have been proposed which allow for a controlled
introduction of non-fibered connectives. Modal type theories are often delicate to construct,
which has motivated systems which can be instantiated to different modalities [10, 14].

We focus on one such general modal type theory: MTT, a multimodal dependent type
theory [10]. MTT can be instantiated by a strict 2-category specifying a collection of modes,
modalities and natural transformations between them—a mode theory—and by altering the
input mode theory MTT can be used to reason about e.g., guarded recursion, internalized para-
metricity, axiomatic cohesion, and the metatheory of type theories [6]. Each instantiation of
MTT is known to enjoy certain metatheorems regardless of the mode theory (soundness, canon-
icity) however, lacking a similarly general normalization result, MTT cannot be implemented
in a way which permits easy reuse between different mode theories.

We contribute a normalization algorithm for MTT which applies regardless of its mode
theory [9]. As a corollary of this normalization result, we show that type constructors are
injective and that conversion in MTT is decidable if and only if equality in the underlying mode
theory is decidable. As a further consequence, we show that the typechecking problem for MTT
is decidable under these same circumstances. Accordingly, this result provides a theoretical
grounding for an implementation which can be instantiated to a variety of modal situations.

Normalization by gluing Our normalization proof follows in the tradition of semantic proofs
of normalization and gluing arguments [1–3, 7, 8, 13, 16, 19]. More precisely, we do not proceed
by fixing a rewriting system which we prove to be strongly normalizing nor by defining a nor-
malization algorithm on raw terms which is then shown to be sound and complete. Instead, we
construct a model in the category given by gluing the syntactic model along a nerve restrict-
ing from substitutions to renamings. Normalization follows from this model together with the
initiality of syntax. While this approach is standard for normalization-by-gluing proofs, the
multimodal apparatus introduces several complications.

MTT Cosmoi In order to discuss the novel features of this proof, we must review the model
theory of MTT. For the remainder of this abstract, we consider MTT over a fixed mode theory
M. A model of MTT is a strict 2-functor1 F :Mcoop Cat sending m :M to a category F (m)
which supports a model of MLTT. More precisely, in the language of natural models, we require
a representable natural transformation τm : Ṫm Tm in PSh(F (m)) closed under the standard
connectives of type theory [4]. For each modality µ : n m, we require a commutative square:

F (µ)∗Ṫn

F (µ)∗Tn

Ṫm

Tm
1Recall that Mcoop is a 2-category with the same objects as M but whose 1- and 2-cells are reversed.
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The bottom (resp. top) map of this commutative square interprets the formation (resp. intro-
duction) rule of the modal type, see Gratzer et al. [11, Section 5] for further details.

The extra complexity of a 2-functor of models precludes directly constructing the necessary
model of MTT. Instead, we begin by generalizing the definition of models following Gratzer
and Sterling [12]. We require a pseudofunctor G :M Cat such that G(m) is merely locally
Cartesian closed and G(µ) is a right adjoint, intuitively capturing PSh(F (m)) and F (m)∗

respectively. Even in this weaker setting, we can still state all the requirements of a model
(a universe τm closed under various connectives, etc.) with one exception: we must drop
the requirement that each τm is fiberwise representable. A pseudofunctor equipped with the
remaining applicable structure is an MTT cosmos. Note that a model of MTT induces a cosmos,
in particular presheaves over contexts induce a cosmos SJ−K.

We define a category of renamings Renm and a functor i[m] embedding it into the category
of contexts Cxm. Similarly, we define neutral and normal forms together with an embedding
into terms such that normal forms correspond to β-normal and η-long terms and show that
they form presheaves over Renm. Like terms, normal forms contain modalities and 2-cells from
M so, while they are not quotiented by a definitional equality, their equality is decidable if and
only if the equality in M is decidable.

By gluing along i[m]∗ : PSh(Cxm) PSh(Renm), we obtain a presheaf topos GJmK and
the 2-naturality of i[−] ensures that GJ−K organizes into a 2-functor out ofM. The crux of our
normalization argument is the construction of a cosmos in GJ−K lying over SJ−K.

The normalization cosmos While GJmK is a presheaf topos, it is cumbersome to manip-
ulate directly. In order to construct the normalization cosmos in GJ−K, we adapt synthetic
Tait computability (STC) [17, 18] to our multimodal setting and work exclusively in the in-
ternal language of GJ−K. Specifically, we show that MTT can be interpreted into GJ−K and
under this interpretation there is a proposition synm which presents SJmK = PSh(Cxm) (resp.
PSh(Renm)) as an open (resp. closed) subtopos of GJmK. Having relaxed from models of MTT
to cosmoi, the required additional structure can be presented as a sequence of constants to
be implemented in the internal language, with the open modality being used to ensure that a
connective lies strictly over its counterpart in SJ−K.

Working internally, we substantiate the constants of an MTT cosmos while ensuring that
they lie strictly over their counterparts in SJmK. Unlike typical gluing proofs, there is no need
to ever exit the internal language and so many subtle constructions are transformed into a
sequence of programming exercises in MTT. Following Sterling and Harper [18], we use the
internal realignment axiom [5, 15] to ensure that natural constructions of various connectives
lie strictly over their counterparts in SJ−K. We conclude that there is an MTT cosmos in GJ−K
and a morphism of cosmoi π : GJ−K SJ−K.

The normalization function While syntax SJ−K is the initial model of MTT, it is not initial
among cosmoi. It still, however, enjoys a privileged position in this category which ensures that
each context, term, and type in SJ−K is in the essential image of π. From this fact and the
definition of π, we conclude the following almost immediately.

Theorem 1. Each term and type in MTT has a unique normal form.

As our proof of this fact is constructive, it yields an effective procedure which parallels a
familiar normalization-by-evaluation algorithm. Consequently, we obtain the following:

Corollary 2. The conversion problem in MTT is equivalent to the conversion problem ofM.

Corollary 3. If modalities and 2-cells enjoy decidable equality, typechecking MTT is decidable.
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Recently, a line of modal type theories centering on ‘Fitch style’ modalities has been
proposed [1, 3, 6, 10]. These type theories incorporate a non-fibered modality which behaves
like a right adjoint. Specifically, Fitch style type theories pair a modality 2 with a functor on
contexts µ to form a dependent adjunction, whose transpositions constitute the introduction
and elimination rules:

Γ.µ `M : A

Γ ` mod(M) : 2A

Γ `M : 2A

Γ.µ ` unmod(M) : A

Requiring that these operations form a bijection provides β and η rules for 2. Moreover, the
introduction rule is evidently stable under substitution; categorically, this is the the naturality
of the bijection in Γ. Unfortunately, the same cannot be said for the elimination principle
unmod(−). A type theorist will immediately identify the “non-general” context in the conclusion
and worry that it will prove impossible to commute an arbitrary substitution past unmod(−).
To address this, prior Fitch style type theories have adopted slight variations on the rule, each
baking in the bare minimum to ensure the admissibility of substitution.

While it provides a convenient syntax, this approach is brittle, with each modification to the
modal apparatus requiring a full redesign. Even restricting attention to a single modal type theory,
the resultant syntax cannot be used effectively as an internal language: the proof of admissibility
of substitution requires induction not just on terms, but on the definable substitutions. When
we use the calculus as an internal language, we add in additional substitutions from the model
to more effectively capture the particulars of this situation. In so doing, however, we disrupt the
substitution property of our type theory: a lemma proved in one context can no longer be freely
applied in a different context, resulting in a type theory that is much less useful. While other
solutions to this problem have been proposed, most notably a weakening of the elimination
rule [9], it has remained unknown how to combine even two common Fitch style modalities such
as 2 and � [7] in one dependent type theory.

We address this state of affairs by assuming additional structure, that of a parametric
adjunction, which reconciles the strong Fitch style elimination rule with substitution. We
thereby contribute FitchTT, a modal type theory which can support an arbitrary collection of
Fitch style modalities and natural transformations between them [8]. It is a small step from one
parametric adjoint modality to full FitchTT, but this is testament to the utility of parametric
adjoints in structuring the theory. Indeed, FitchTT is capable of containing multiple interacting
modalities such as the aforementioned 2 and � without the difficulties of prior approaches.

More than this, the extra structure of parametric adjoints is latent in all prior Fitch calculi,
and their presence in the initial models of these type theories accounts for the admissibility of
substitution. As a result, FitchTT conservatively extends DRA [3] and embeds in MLTTµ [10].
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Furthermore, this extra structure allows us to systematically rederive the syntax of a single-clock
variant of Clocked Type Theory [1] and parametric type theory [4] in a uniform setting.

The special case of functions To motivate the role of parametric adjoints in Fitch style
modalities, we focus on a concrete modality: exponentiation by a closed type C. Specializing the
above rules with 2A = C→ A and Γ.µ = Γ.C, we see that the introduction rule is the familiar
introduction rule of dependent products, but the elimination rule is more surprising:

Γ `M : C→ A

Γ.C ` unmod(M) : A

This rule is equivalent to the application rule because [∆,Γ.C] ∼= [∆,Γ] × [∆,1.C]. We first
bundle a substitution r : ∆ 1.C with ∆ and view the pairing as an object in the slice category
Cx/C. By taking Γ.C as another object over 1.C by projection, we can rewrite this isomorphism
in a more compact form:

[∆,Γ]Cx
∼= [(∆, r), (Γ.C,vk)]Cx/C

Written this way, we see that −.C is a right adjoint, not as a functor Cx Cx but as a
functor Cx Cx/C. More concisely, −.C is a parametric right adjoint (PRA):

Definition 1. F : C D is a parametric right adjoint if F/1 : C D/F (1) is a right adjoint.

In the case of −.C, the left adjoint U is the forgetful functor Cx/C Cx which sends
(Γ, r) to Γ. We now restate the traditional application rule purely in terms of this parametric
adjunction:

r : Γ 1.C U(Γ, r) `M : C→ A

Γ `M〈r〉 : A[η[r]]

Unlike the rule for unmod(−) specialized to C → −, this rule is stable under substitution.
Recalling that U(Γ, r) = Γ, this rule becomes precisely the familiar application rule.

Generalizing with PRAs Taking our cue from this special example, we consider a general
Fitch style modality 〈µ | −〉 whose left adjoint on contexts −.{µ} is a parametric right adjoint.
We adopt the notation Γ/(r : µ) = U(Γ, r) for the parametric left adjoint to −.{µ} by analogy
with the construct used in nominal and parametric type theories [2, 4, 5].

The introduction rule for 〈µ | −〉 remains unchanged, but we now take the modified variant
of the application rule for our elimination rule:

r : Γ 1.{µ} Γ/(r : µ) `M : 〈µ |A〉
Γ `M @ r : A[η[r]]

We may equip this rule with β and η rules which closely mirror those of dependent products.
We further observe that M @ r is interderivable with unmod(M), but stable under substitution.

Unlike the ad hoc variants of unmod(−) used in prior Fitch style type theories, this rule
scales to multiple modalities. In fact, no issues arise if we allow any strict 2-category of modes,
modalities, and natural transformations [11] between them, provided that we require that each
modality is equipped with a left adjoint on contexts which is itself a PRA.
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We build on the method of deriving natural deduction rules for a connective c from the
truth table tc of c, as it has been introduced in [2, 3]. In [2] we defined the method for both
constructive logic and classical logic, and the constructive case has been studied in more detail,
using proof terms for deductions, in [3, 4]. Here we focus on the classical case: we introduce
proof terms for the classical natural deduction rules that we extract from a truth table and we
use them to study normal deductions. These normal deductions, or deductions in normal form,
should satisfy the sub-formula property: every formula that occurs in a normal deduction is a
sub-formula of the conclusion or one of the assumptions. We prove this property by giving a
normalization procedure, that transform a deduction into one in normal form.

A special advantage of our general method of extracting deduction rules from the truth
table is that our deduction rules have a specific format. (The format is somewhat related to
the generalized elimination/introduction rules defined in [5]. In [3] we discuss the connections
in more detail.) This also allows us to give a generic format for the proof terms and to study
them generally for an arbitrary set of connectives. Our method also has the advantage (which
has already been discussed in [2]), that we can study connectives “in isolation”: e.g. there
are classical rules for implication, which use only implication (and no negation). In case a
connective c is monotonic, the constructive and the classical deduction rules are equivalent, but
in case c is non-monotonic they are not. (Connective c of arity n is monotonic iff its truth table
function tc : {0, 1}n → {0, 1} is monotonic with respect to the ordering induced by 0 ≤ 1.) We
will also show that, for a logic with connectice set C, if one non-monotonic connective c ∈ C
has classical rules, then all connectives in C “become” classical. So, e.g. if we have {→,¬} as
connectives with classical rules for → and constructive rules for ¬, we can derive the classical
rules for ¬.

To be more precise: the elimination rules are as follows. If tc is the truth table for the n-ary
connective c, and tc(a1, . . . , an) = 0 we have the following rule, where Φ = c(A1, . . . , An) is the
formula we eliminate. Here, the Ai correspond to the 1-entries and the Aj correspond to the
0-entries of the row (a1, . . . , an) in tc that we consider. The formula D is arbitrary.

` Φ ` Ai1 . . . ` Aik Aj1 ` D . . . Aj` ` D
el

` D

So, Ai1 , . . . , Aik , Aj1 , . . . , Aj` are the direct sub-formulas of Φ = c(A1, . . . , An) and we refer to
the Ai as lemma and the Aj as casus in the derivation rule. The classical introduction rules
are derived from rows in tc with tc(a1, . . . , an) = 1. They are as follows, where again the Ai

correspond to the 1-entries and the Aj correspond to the 0-entries of the row (a1, . . . , an).

Φ ` D ` Ai1 . . . ` Aik Aj1 ` D . . . Aj` ` D
in

` D
So, for a connective c, every line in the truth table tc gives a deduction rule: an elimination
rule if tc(a1, . . . , an) = 0 and an introduction rule if tc(a1, . . . , an) = 1, which yields 2n rules,
which can be optimized. For further details, see [2, 3].
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Given a logic with classical derivation rules as derived from truth tables for a set of connec-
tives C, we can define the typed λ-calculus λC , which has judgments Γ ` t : A, where A is a
formula, Γ is a set of declarations {x1 : A1, . . . , xm : Am}, where the Ai are formulas and the
xi are term-variables such that every xi occurs at most once in Γ, and t is a proof-term. The
abstract syntax for proof-terms, Term, is as follows, where x ranges over variables.

t ::= x | (λy : A.t) ? {t ; λx : A.t} | t · [t ; λx : A.t]

The terms are typed using the following derivation rules, where the first rule is the axiom rule
basically stating that Γ ` A if A ∈ Γ.

if xi : Ai ∈ Γ
Γ ` xi : Ai

Γ ` t : Φ . . . Γ ` pk : Ak . . . Γ, y` : A` ` q` : D . . .
el

Γ ` t · [p ; λy : A.q] : D

Γ, z : Φ ` t : D . . . Γ ` pi : Ai . . . Γ, yj : Aj ` qj : D . . .
in

Γ ` (λz : Φ.t) ? {p ; λy : A.q} : D

Here, p is the sequence of terms p1, . . . , pm′ for all the 1-entries in the truth table, and
λy : A.q is the sequence of terms λy1 : A1.q1, . . . , λym : Am.qm for all the 0-entries in the truth
table.

To reduce the proof terms (and thereby the deductions) to normal form, we first perform
permutation reductions and then we eliminate detours. This is similar to the constructive case,
except for now

• a term is in permutation normal form if all lemmas are variables,

• a detour is an elimination of Φ followed by an introduction of Φ.

Note the difference with constructive logic, where a detour is an introduction directly followed
by an elimination. Here it is the other way around, and the introduction need not follow the
elimination directly.

We can be more precise by giving the following abstract syntax N for permutation normal
forms:

N ::= x | (λy : A.N) ? {z ; λx : A.N} | y · [z ; λx : A.N ],

where x, y, z range over variables. We can obtain a deduction in permutation normal form
by moving applications of an elimination or introduction rule that have a non-trivial lemma
upwards, until all lemmas become trivial: the proof-terms are variables. (This only works for
the classical case!) Now, a detour is a pattern of the following shape

(λx : Φ. . . . (x · [v ; λw : B.s]) . . .) ? {z ; λy : A.q}

that is, an elimination of Φ followed by an introduction of Φ, with an arbitrary number of steps
in between. For terms in permutation normal form, we show how detours can be eliminated,
obtaining a term in normal form which satisfies the sub-formula property. It should be noted
that in the above case, this need not be the only occurrence of x (one λx : Φ may give rise to
several detours), so this elimination is not straightforward. Another situation is that x may
not occur at all; that is the simplest situation and the sub-term (λx : Φ.t) ? {z ; λy : A.q} can
simply be replaced by t.

We also study how our reduction of classical derivations relates to well-known reductions of
classical natural deduction, like as in [1], and how we can interpret control operators.
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Abstract

We describe novel axiomatic systems for classical propositional logic: one based on the
K and S combinators and elimination rules and one on transitivity of implication, explosion
and rules for disjunction. We show how Isabelle/HOL helps investigate such systems.

Introduction

We have recently [7] formalized axiomatic systems for (functionally complete) fragments of clas-
sical propositional logic in Isabelle/HOL [10] and build on this work here. The first fragment
(“System W”, 667 lines) is based on falsity and implication, and we gave a traditional presenta-
tion of three different historical axiom systems [2]. The second (“System R”, 629 lines, notable
overlap with System W) is based on negation and disjunction. We made similar investigations
for the two systems, in particular into soundness and completeness and the independence of
certain axioms. Here, we consider new concise axioms (“TYPES1” and “TYPES2”, each about
30 lines) for the first fragment and use Isabelle/HOL to relate them to the existing work. From
a teaching perspective, the proof assistant provides an environment for students where they can
confidently explore variations of the systems. The formalizations are available online:

https://people.compute.dtu.dk/ahfrom/types2021/

In a way, our explorations follow in historical footsteps:

Undoubtedly there was a competitive element to the search for ever better axiom
systems, in particular in the attempt to find single axioms for various systems, and
the exercise has been smiled upon or even belittled as a mere “sport”. . .

Tarski showed in 1925 that the pure implicational calculus could be based on a single
axiom, but a series of improvements by Wajsberg and  Lukasiewicz led to the latter’s
discovering in 1936 that the formula CCCpqrCCrpCsp could serve as single axiom
and that no shorter axiom would suffice, though the publication of this result had to
wait until 1948.

Source: https://plato.stanford.edu/entries/lukasiewicz/

Our Approach and Related Work

We deeply embed the logic by declaring the syntax as a datatype, which the semantics interprets
into the higher-order logic. We formalize our proof systems as inductive predicates based
on modus ponens and various axioms. Soundness, while trivial, is important and the proof
obligations can be discharged automatically. Completeness follows the Henkin style of building
models from maximal consistent sets of formulas (described elsewhere [3]). Both properties are
shown for other systems by translating derivations (the “sledgehammer” tool can help).

In contrast to Michaelis and Nipkow [8,9] we establish the soundness and completeness of a
number of different axiomatic systems and the two presented here are novel as far as we know.

https://people.compute.dtu.dk/ahfrom/types2021/
https://plato.stanford.edu/entries/lukasiewicz/
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The TYPES1 Theory

The first two axioms correspond to the combinators K and S (involving only implication), and
the second two axioms eliminate the negation and disjunction operators, respectively.

inductive H :: 〈form ⇒ bool 〉 (〈` -〉 [50 ] 50 ) where
〈` p =⇒ ` (p −→ q) =⇒ ` q〉 |
〈` (p −→ q −→ p)〉 |
〈` ((p −→ q −→ r) −→ (p −→ q) −→ p −→ r)〉 |
〈` (p −→ ¬ p −→ q)〉 |
〈` ((p −→ r) −→ (q −→ r) −→ p ∨ q −→ r)〉

The last axiom is classical since disjunction is an abbreviation: p ∨ q ≡ ¬ p −→ q. With
Isabelle/HOL we quickly prove other formulas derivable (also using Sledgehammer):

proposition ∗: 〈` (¬ ¬ p −→ p)〉

by (metis H .intros)

This formula is the key lemma in the completeness proof for the axiomatic system TYPES1.

The TYPES2 Theory

The second axiom system is based on transitivity of implication, the principle of explosion,
idempotence of disjunction as well weakening on the left-hand side.

inductive H :: 〈form ⇒ bool 〉 (〈` -〉 [50 ] 50 ) where
〈` p =⇒ ` (p −→ q) =⇒ ` q〉 |
〈` ((p −→ q) −→ (q −→ r) −→ p −→ r)〉 |
〈` (p ∧ ¬ p −→ q)〉 |
〈` (p ∨ p −→ p)〉 |
〈` (p −→ q ∨ p)〉

Unabbreviated, idempotence of disjunction is the classical principle (¬ p −→ p) −→ p.
We automatically show derivability of Peirce’s law, the K combinator and a formulation of the
principle of explosion based on the primitive falsity (all proofs by metis H.intros):

lemma ∗: 〈` (((p −→ q) −→ p) −→ p)〉

lemma ∗∗: 〈` (p −→ q −→ p)〉

lemma ∗∗∗: 〈` (⊥ −→ p)〉

Like for the axiomatic system TYPES1 we prove completeness for TYPES2 by identifying
the key lemmas required — so far we have more or less used a trial and error approach.

Conclusions and Future Work

We have demonstrated how Isabelle/HOL can be used to formalize new concise axiomatic sys-
tems for classical propositional logic. The automation, including Sledgehammer, helps relate the
systems to existing work by proving the derivability of key formulas. The formalization includes
verification that  Lukasiewicz’s formula CCCpqrCCrpCsp can indeed serve as single axiom [7],
a task that Pfenning failed to complete [11,13] and Wos and Fitelson did in OTTER [12].

Our work is part of the IsaFoL project, Isabelle Formalization of Logic [1], embracing first-
and higher-order logic too, which aims “to develop libraries and a methodology to support mod-
ern research in automated reasoning” [1]. In addition to new axiomatic systems for (classical)
propositional logic we see extensions to modal logics [4–6] as a promising line of future work.
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1 Introduction

In dependently typed programming languages, large eliminations allow programmers to define
types by induction over datatypes — that is, as an elimination of a datatype into the large
universe of types. This provides an expressive mechanism for arity- and data-generic program-
ming [7]. However, as large eliminations are closely tied to a type theory’s primitive notion of
inductive type, this expressivity is not expected within polymorphic pure typed lambda calculi
in which datatypes are encoded using impredicative quantification.

Seeking to overcome historical difficulties of impredicative encodings, the calculus of de-
pendent lambda eliminations (CDLE) [5, 6] extends the Curry-style (i.e., extrinsically typed)
calculus of constructions (CC) [1] with three type constructs that together enable the deriva-
tion of induction for impredicative encodings of datatypes (Geuvers [3] showed this was not
possible for CC). In this paper, we report progress on overcoming another difficulty: the lack
of large eliminations for these encodings. We show that the expected computation rules for
a large elimination, expressed using a derivable notion of extensional equality for types, can
be proven within CDLE. We outline our method with a definition of n-ary functions in the
remainder of this paper; omitted are many other examples and a generic formulation of the
method for the Mendler-style encodings of the framework of Firsov et al. [2]. These results
have been mechanically checked by Cedille, an implementation of CDLE.

2 Simulating large eliminations: n-ary functions

Figure 1a shows the definition of Nary , the family of n-ary function types over some type T , as a
large elimination of natural numbers Nat . Our method begins by approximating this inductive
definition of a function as an inductive relation between Nat and types, given as NaryR in
Figure 1b. This approximation is inadequate: we lack a canonical name for the type Nary n
because n does not a priori determine the type argument of NaryR n. In fact, without a method
of proof discrimination we are unable to define a function of type ∀N.NaryR zero N → N → T
to extract a 0-ary term of type T . In the naryRS case, one would need to discharge the absurd
equation {zero ' suc n} for some n (the equality type for terms is written {t1 ' t2}). CDLE
provides such a discriminator with the δ axiom [6] for its primitive equality type, allowing one
to abort impossible cases.

(a) As a large elimination

Nary : Nat → ?
Nary zero = T

Nary (suc n) = T → Nary n

(b) As a GADT

data NaryR : Nat → ? → ?
= naryRZ : NaryR zero T

| naryRS : ∀ n,Y. NaryR n Y → NaryR (suc n) (T → Y)

Figure 1: n-ary functions over T
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Our task is to show that NaryR defines a functional relation, i.e., for all n : Nat there exists
a unique type Nary n such that NaryR n (Nary n) is inhabited. Using implicit products (c.f.
Miquel [4]), a candidate for Nary can be defined in CDLE as:

Nary = λ n: Nat. ∀ X: ?. NaryR n X ⇒ X

For all n, read Nary n as the type of terms contained in the intersection of the family of types
X such that NaryR n X is inhabited. For example, every term of type Nary zero has type
T (since T is in this family), and every term of type T has type Nary zero (by induction on
the assumed proof of NaryR zero X for arbitrary X). However, at the moment we are stuck
when attempting to prove NaryR zero (Nary zero). Though we see that T and Nary zero are
extensionally equal types (they classify the same terms), using naryRZ requires that they be
definitionally equal!

Γ ` λx. x : S → T Γ ` λx. x : T → S
Γ ` λx. x : {S ∼= T}

Γ ` t : Tj Γ ` t′ : {T1
∼= T2} i, j ∈ {1, 2}, i 6= j

Γ ` t : Ti

Figure 2: Derived extensional equality of types

Figure 2 gives an axiomatic presentation of a derived type family expressing extensional type
equality in CDLE, written with curly braces to match the notational convention for equality
between terms. The introduction rule states that S and T are equal if the identity function can
be assigned both the types S → T and T → S, i.e., we can exhibit a two-way inclusion between
the set of terms of type S and terms of type T . The elimination rule allows us to coerce the
type of a term when that type is provably equal to another type. We change the definition of
NaryR so that its type index respects extensional type equality:

data NaryR : Nat → ? → ?
= naryRZ : ∀ X. { X ∼= T } → NaryR zero X

| naryRS : ∀ n,Y,X. NaryR n Y → { X ∼= T → Y } → NaryR (suc n) X

With the move to an extensional notion of type equality, to show that NaryR is functional
requires showing that it is well-defined with respect to this notion. These three properties —
well-definedness, uniqueness, and existence — can be proven in CDLE. We show the types of
these proofs below.

naryRWd : ∀ n,X1,X2. NaryR n X1 → { X1 ∼= X2 } → NaryR n X2

naryREq : ∀ n,X1,X2. NaryR n X1 → NaryR n X2 → { X1 ∼= X2 }

naryREx : Π n. NaryR n (Nary n)

From this, we prove that the computation laws of Figure 1a hold as extensional type equalities:

naryZC : { Nary zero ∼= T }

narySC : ∀ n. { Nary (succ n) ∼= T → Nary n }

The upshot is we can simulate large eliminations with two-way type inclusions between the left-
and right-hand sides of such a definition. For example, the function app that applies an n-ary
function to a length-indexed list of n elements of type T , written in Agda-like pseudocode as:

app : ∀ n. Nary n → Vec T n → T

app .zero f vnil = f

app .(succ n) f (vcons hd tl) = app n (f hd) tl

is typeable in CDLE using naryZC on f in the case for vnil and narySC in the case for vcons.
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Introduction. The setoid model of type theory provides a way to bootstrap functional exten-
sionality [1] and propositional extensionality (univalence for propositions) [3]: the setoid model
can be defined in an intensional metatheory with a universe of definitionally proof irrelevant
(strict) propositions SProp. Moreover it is a strict model in such a metatheory, that is, all
equalities of the model (e.g. β and η for function space) hold definitionally. As a result, we
obtain a model construction: any model of type theory with SProp can be turned into another
model, its “setoidified” version which supports these extra principles. In addition to functional
and propositional extensionality, the setoid model justifies propositional truncation1, quotient
types2 and countable choice3.

Since Agda supports SProp [9], it is a convenient tool to experiment with the setoid model.
It is straightforward to formalise the setoid model as a category with families (CwF [6]) with Π,
Σ, unit, empty, Bool, N, Id types, a universe of strict propositions. Extending the setoid model
with a (non-univalent) universe of sets is harder, it was shown by Altenkirch et al. [2] that
it can be done using a special form of induction-recursion or large induction-induction (both
of which are supported by Agda) or an SProp-valued identity type with transport over types
(which is currently not supported by Agda).

Until recently we thought [12] that general inductive types and even quotient inductive-
inductive types (QIITs, initial algebras of generalised algebraic theories [13, 5]) are unproblem-
atic in the setoid model, provided we have (possibly SProp-sorted) inductive-inductive types
in the metatheory. Simon Boulier pointed out that our formalisations of Martin-Löf’s identity
type4 and the universal QIIT5 only provide eliminators in the empty context. They can be sal-
vaged using a method related to the local universes construction [14] which we explain below.

The setoid model. A context or a closed type in this model is a setoid, i.e. a set (we
say set instead of (Agda) type to avoid confusion) together with an SProp-valued equivalence
relation. A type over a context Γ = (|Γ|,∼Γ) is a displayed setoid with a fibration condition
coeA : x ∼Γ x′ → |A| x → |A| x′ such that x ∼A (coeA p x). Substitutions (and terms) are
(dependent) functions between the underlying sets which preserve the relations.

Example: Con-Ty. To illustrate the general method, we explain how to construct the follow-
ing QIIT in the setoid model6. It has two sorts, five constructors and one equality constructor.

Con : Set U : Ty γ

Ty : Con→ Set El : Ty (γ � U)

• : Con Σ : (a : Ty γ)→ Ty (γ � a)→ Ty γ

– � – : (γ : Con)→ Ty γ → Con eq : γ � Σ a b = γ � a� b

1https://bitbucket.org/akaposi/setoid/src/master/agda/Model/Trunc.agda
2https://bitbucket.org/akaposi/setoid/src/master/agda/Model/Quotient.agda
3https://bitbucket.org/akaposi/setoid/src/master/agda/Model/CountableChoice.agda
4https://bitbucket.org/akaposi/qiit/src/master/Setoid/Path.agda
5https://bitbucket.org/akaposi/qiit/src/master/Setoid/UniversalQIIT/
6https://bitbucket.org/akaposi/qiit/src/master/Setoid/ConTy2.agda

https://bitbucket.org/akaposi/setoid/src/master/agda/Model/Trunc.agda
https://bitbucket.org/akaposi/setoid/src/master/agda/Model/Quotient.agda
https://bitbucket.org/akaposi/setoid/src/master/agda/Model/CountableChoice.agda
https://bitbucket.org/akaposi/qiit/src/master/Setoid/Path.agda
https://bitbucket.org/akaposi/qiit/src/master/Setoid/UniversalQIIT/
https://bitbucket.org/akaposi/qiit/src/master/Setoid/ConTy2.agda
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We omitted some arguments, e.g. U implicitly takes a parameter γ. In the setoid model, we
need to define a type Con in the empty context, a type Ty over Con, and their elimination
principles. We start by defining in Agda an inductive-inductive type (IIT) with these sorts:

|Con| : Set |Ty| : |Con| → Set

∼Con : |Con| → |Con| → SProp ∼Ty : γ ∼Con γ
′ → |Ty| γ → |Ty| γ′ → SProp

The constructors of |Con| are | • | and |� |, the constructors of |Ty| are |U|, |El| and |Σ|, while
∼Con has a constuctor |eq|. In addition, ∼Con and ∼Ty have constructors stating that it is an
equivalence relation, and they have congruence constructors for each point constructor, e.g.
there is ∼�: (p : γ ∼Con γ

′)→ ∼Ty p a a
′ → (γ�a) ∼Con (γ′�a′). Finally, |Ty| has a constructor

coeTy : γ0 ∼Con γ1 → |Ty| γ0 → |Ty| γ1 and ∼Ty a constructor for ∼Ty p a (coeTy p a). Thus the
IIT is the “fibrant equivalence congruence closure” of the constructors.

With the aid of this IIT (note that it has both Set and SProp-sorts) we define the type
formation rules and constructors of the Con-Ty QIIT in the setoid model in the empty context :
the underlying set for Con is |Con|, the relation is ∼Con, the witnesses for the equivalence relation
come from the corresponding constructors of ∼Con, and so on. Thus Con becomes a type in the
empty context in the setoid model. Ty is a type over the one-element context Con. • is a term
in the empty context of type Con, and so on. We added exactly the required structure to the
IIT to be able to define the constructors. The eq equality constructor is given by |eq|. Given a
Con-Ty algebra in the empty context, we define four functions by recursion-recursion as a first
step towards the (non-dependent) elimination principle.

The type formation rules and constructors can easily be lifted from the empty context to an
arbitrary context and all the substitution laws hold definitionally. We also need that for any
context Γ, we can eliminate into a Con-Ty algebra in Γ. Our setoid model has Π types and
K constant types (a context can be turned into a type). With the help of these we can turn
a type C in Γ into the type Π(x : KΓ).C[x] which is in the empty context. This way we turn
the algebra in Γ into an algebra in the empty context on which we can apply our previously
defined elimination principle. This way we obtain the eliminator in arbitrary contexts. All
computation rules of this eliminator are definitional.

We prove uniqueness of the eliminator by induction-induction on |Con| and |Ty|. The sub-
stitution law of the eliminator is proven by another induction-induction on the same sets.

In our formalisation, Con-Ty has an additional infinitary constructor (an infinitary Π type
indexed by a code of a setoid in a universe). It seems that with the help of a universe in the
setoid model, open QIITs and those with infinitary constructors can be handled as well. Note
that in contrast with the unordered infinitely branching tree example in [4], we do not use the
(countable) axiom of choice to construct this QIIT.

Arbitrary QIITs Signatures for QIITs can be specified using the theory of QIIT signatures
[13] (ToS) which is itself an infinitary QIIT. We formalised7 that the setoid model supports ToS
in the empty context. Based on our experience with Con-Ty, we expect that it is possible to
lift ToS from the empty context to arbitrary contexts. If this succeeds, then following [13], we
can construct all QIITs from ToS with propositional computation rules. As the construction
of [13] is performed in extensional type theory, we use Hofmann’s conservativity result [10, 15]
to transfer it to the setoid model. This way however we only obtain propositional computation
rules. It remains to be proven that all QIITs are supported by the setoid model with definitional
computation rules. We plan to do this by induction on QIIT signatures.

We would also like to understand the relationship of this construction to that of higher
inductive types (HITs) in cubical models [8, 7] and how they could be extended to HIITs [11].

7https://bitbucket.org/akaposi/qiit/src/master/Setoid2/ToS/
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Two-level type theory [2] (2LTT) is a system for performing certain metatheoretic construc-
tions and reasoning involving object-level type theories. Such reasoning is always possible by
simply embedding object theories in metatheories, but in that case we have to explicitly handle
a deluge of technical details about the object theory, most notably substitutions. If everything
that we aim to do is natural with respect to object-level substitution, we can instead use 2LTT,
which can be viewed as a notation for working with presheaves over the object-level category
of substitutions.

Likewise in metaprogramming, there is a spectrum: we can simply write programs which
output raw source code, or use staging instead, which is safer and more convenient, but also
restricted in some ways. In the current work we observe that 2LTT is a powerful model for
generative staged compilation.

Basic rules of 2LTT. We have universes Us
i , where s ∈ {0, 1}, denoting a stage or level in the

2LTT sense, and i ∈ N denotes a usual level index of sizing hierarchies. The two dimensions of
indexing are orthogonal, and we will elide the i indices in the following. We assume Russell-style
universes. For each Γ ` A : U0, we have Γ ` CodeA : U1. Quoting: for each Γ ` t : A, we have
Γ `<t>: CodeA. Unquoting: for each Γ ` t : CodeA, we have Γ `∼ t : A. Moreover, quoting
and unquoting form an isomorphism up to definitional equality. U0 and U1 can be closed under
arbitrary additional type formers.

The idea of staging is the following: given a closed A : U0 with a closed t : A in 2LTT,
there are unique A′ and t′ in the object theory, which become definitionally equal to A and
t respectively after being embedded in 2LTT. In short, every meta-level construction can be
computed away, and only object-level constructions remain in the result. Annekov et al. [2]
only showed mere existence of A′ and t′ (as a conservativity theorem for 2LTT). We can get
unique existence as well, using the normalization of 2LTT: by induction on the (unique) normal
forms of A and t, we can show that they cannot contain meta-level subterms. This shows that
normalization is a sound staging algorithm, but in practice we do not want to compute full
normal forms; we want to compute meta-level redexes only. This can be done with a variation
of standard normalization-by-evaluation [1, 5] which also keeps track of stages.

Applications

Control over inlining and compile-time computation. We can define two variations of
the polymorphic identity function for object-level types:

id : (A : U0)→ A→ A id ′ : (A : CodeU0)→ Code ∼A→ Code ∼A
id = λAx. x id ′ = λAx.x

The second version is evaluated at compile time. For example, ∼ (id ′ < Bool0 >< true0 >)
can be used in object-level code, which is computed to true0 by staging. We can also freely

∗The author was supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-
VEKOP-16-2017-00002).
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use induction on meta-level values to generate object-level code, including types. Hence, 2LTT
supports full dependent types (with universes and large elimination) in staging.

Monomorphization. We assume now that the object language is a simple type theory.
In this case, there is no universe U0 in the object-level, so there is no CodeU0, but we can
still freely include a meta-level type Ty0 whose terms are identified with object-level types.
Now, meta-level functions can be used for quantification over object-level types, as in id : (A :
Ty0)→ CodeA→ CodeA. However, since the object theory is simply typed and monomorphic,
all polymorphism is guaranteed to compute away during staging.

Control over lambda lifting and closure creation. We assume now a dependent type
theory on both levels, but with a first-order function type on the object level. This is defined
by splitting U0 to a universe V0 which is closed under inductive types but not functions, and
a universe C0 which has V0 as a sub-universe, and is closed under functions with domains in
V0 and codomains in C0. This object theory supports compilation which requires only lambda
lifting, but no closures. On its own, the object theory is fairly restricted, but together with
staging we have a remarkably expressive system. Then, we can close V0 under a separate type
former of closure-based functions, thereby formally distinguishing lambda-liftable functions
from closure-based functions. This enables typed analysis of various optimization and fusion
techniques. E.g. we get guaranteed closure-freedom in code output if a certain fusion technique
can be formalized with only first-order function types. In particular, this may obviate the need
for arity analysis [3] in fold-based fusion.

Memory layout control. We assume again a dependent theory on both levels, but now
index U0 over memory layouts. For example, U0 erased may contain runtime-erased types, and
U0 (word64 × word64) may contain types represented as unboxed pairs of machine words. We
assume a meta-level type of layouts. Hence, we can abstract over layouts, but after staging
every layout will be concrete and canonical in the output. This can be viewed as a more
powerful version of levity polymorphism in GHC [4], and a way to retain both dependent types
and non-uniform memory layouts in the object theory.

Potential extensions

More stages, stage polymorphism. The standard presheaf semantics of 2LTT can be
extended to more levels in a straightforward way. It seems feasible to also allow quantifying
over all smaller levels, at a given level.

Stage inference. Code preserves all negative type formers up to definitional isomorphism
[2], e.g. Code (A → B) ' (CodeA → CodeB). This can be used to support inference for
staging annotations, by automatically inserting transports along preservation isomorphisms
during elaboration. The previous ∼ (id ′ <Bool0>< true0>) example could be simply written
as id ′ Bool0 true0 in the surface language, and elaboration would transport id ′ appropriately.
We demonstrated the practical feasibility of such stage inference in a prototype implementation.

Induction on Code. Basic 2LTT supports any model of the object theory in the presheaf
semantics, it does not assume that we have presheaves over the initial model (syntax). Hence,
CodeA is a black box without elimination principles. However, if we are interested in staged
compilation, we can assume the object level to be syntactic and consistently add operations on
CodeA which rely on that assumption, e.g. conversion checking, pattern matching, or induction
on normal forms of object-level expressions.
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Martin-Löf type theory. In Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2018, pages 266–279, New York, NY, USA, 2018. ACM.



Constructive Notions of Ordinals

in Homotopy Type Theory∗

Nicolai Kraus1, Fredrik Nordvall Forsberg2, and Chuangjie Xu3

1 University of Nottingham, Nottingham, UK
2 University of Strathclyde, Glasgow, UK

3 fortiss GmbH, Munich, Germany

Introduction Ordinals are numbers that, although possibly infinite, share an important
property with the natural numbers: every decreasing sequence necessarily terminates. This
makes them a powerful tool when proving that processes terminate, or justifying induction and
recursion [DM79, Flo67]. There is also a rich theory of arithmetic on ordinals, generalising
the usual theory of arithmetic on the natural numbers. Unfortunately, the standard definition
of ordinals is not very well-behaved constructively, and the notion fragments into a number
of inequivalent definitions, each with pros and cons. We consider three different constructive
notions in homotopy type theory, and show how they relate to each other.

Cantor Normal Forms as a Subset of Binary Trees In classical set theory, it is well
known that every ordinal α can be written uniquely in Cantor normal form

α = ωβ1 + ωβ2 + · · ·+ ωβn with β1 ≥ β2 ≥ · · · ≥ βn (1)

for some natural number n and ordinals βi. If α < ε0, then βi < α, and we can represent α
as a finite binary tree (with a condition) as follows [Buc91, NXG20]. Let T be the type of
unlabeled binary trees, i.e. the inductive type with suggestively named constructors 0 : T and
ω− − : T × T → T . Let the relation < be the lexicographical order, i.e. generated by the
following clauses:

0 < ωa b a < c→ ωa b < ωc d b < d→ ωa b < ωa d.

We have the map left : T → T defined by left(0) :≡ 0 and left(ωa b) :≡ a which gives us the
left subtree (if it exists) of a tree. A tree is a Cantor normal form (CNF) if, for every ωs t
that the tree contains, we have left(t) ≤ s, where s ≤ t :≡ (s < t)](s = t); this enforces the
condition in (1). Formally, the predicate isCNF is defined inductively by the two clauses

isCNF(0) isCNF(s)→ isCNF(t)→ left(t) ≤ s→ isCNF(ωs t).

We write Cnf :≡ Σ(t : T ).isCNF(t) for the type of Cantor normal forms.

Brouwer Trees as a Quotient Inductive-Inductive Type In the functional programming
community, it is popular to consider Brouwer ordinal trees O as inductively generated by zero,
successor and a “supremum” constructor sup : (N→ O)→ O which forms a new tree for every
countable sequence of trees [Bro26, CHS97, Han00]. By the inductive nature of the definition,
constructions on trees can be carried out by giving one case for zero, one for successors, and
one for suprema, just as in the classical theorem of transfinite induction. However, calling
the constructor sup is wishful thinking; sup(s) does not faithfully represent the suprema of

∗Supported by the Royal Society, grant reference URF\R1\191055, the UK National Physical Laboratory
Measurement Fellowship project Dependent types for trustworthy tools, and the LMUexcellent program.
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the sequence s, since we do not have that e.g. sup(s0, s1, s2, . . .) = sup(s1, s0, s2, . . .) — each
sequence gives rise to a new tree, rather than identifying trees representing the same supremum.

Using a quotient inductive-inductive type [ACD+18], we can remedy the situation: Let A
be a type and ≺ : A→ A→ hProp. For sequences f, g : N→ A, we say that f is simulated by
g if f - g :≡ ∀k.∃n.f(k) ≺ g(n) (where ∃ is truncated Σ). We say that f and g are bisimilar
with respect to ≺, written f ≈≺ g, if we have both f - g and g - f . A sequence f : N→ A is

increasing with respect to ≺ if we have ∀k.f(k) ≺ f(k + 1). We write N ≺−→ A for the type of
≺-increasing sequences. We now mutually construct the type Brw : hSet together with a relation
≤ : Brw→ Brw→ hProp. The constructors for Brw are zero : Brw, succ : Brw→ Brw, and

limit : (N <−→ Brw)→ Brw and bisim : f ≈≤ g → limit f = limit g,

where we denote x < y :≡ succx ≤ y in the type of limit. The constructors for ≤ ensure
transitivity, that zero is minimal, that succ is monotone, and that limit f is the least upper
bound of f . Because of the infinitary constructor limit, we lose full decidability of equality and
order relations, but by restricting to limits of increasing sequences, we retain the possibility of
classifying an ordinal as zero, a successor, or a limit.

Extensional Wellfounded Orders Finally, we consider a variation on the classical set-
theoretical axioms for ordinals more suitable for a constructive treatment [Tay96], following
the HoTT book [Uni13, Chapter 10] and Escardó [Esc21]. The type Ord consists of a type X
together with a relation ≺ : X → X → hProp which is transitive, extensional (any two elements
of with the same predecessors are equal), and wellfounded (every element is accessible, where
accessibility is the least relation such that x is accessible if every y ≺ x is accessible.).

We also have a relation on Ord itself. Following [Uni13, Def 10.3.11 and Cor 10.3.13], a
simulation between ordinals (X,≺X) and (Y,≺Y ) is a monotone function f : X → Y such that
for all x : X and y : Y , if y ≺Y f x, then we have an x0 ≺X x such that f x0 = y. We write
X ≤ Y for the type of simulations between (X,≺X) and (Y,≺Y ). Given an ordinal (X,≺) and
x : X, the initial segment of elements below x is given as X/x :≡ Σ(y : X).y ≺ x. A simulation
f : X ≤ Y is bounded if we have y : Y such that f induces an equivalence X ' Y/y. We write
X < Y for the type of bounded simulations.

Results For each of Cnf, Brw, Ord, the relation < is transitive, extensional, and wellfounded;
for wellfoundedness, the refined definitions of Cnf and Brw which excludes “junk” terms are
crucial. For Cnf, < is decidable, whereas for Ord, < is decidable if and only if the law of
excluded middle holds. Brw sit in the middle, with some of its properties being decidable, e.g.
it is decidable whether a given x is finite, but < is not decidable in general without further
assumptions. We introduce an abstract framework axiomatising properties such as being a
successor or a limit ordinal, which makes it possible to compare the different notions of ordinals
above. According to these definitions, each of Cnf, Brw, Ord has zeroes and successors, and the
successor functions of Cnf and Brw are both <- and ≤-monotone. For the successor function of
Ord, each of the two monotonicity properties on its own is equivalent to the law of excluded
middle. Cnf does not have limits, but both Brw and Ord do. Using the abstract notions of zero,
successor and limit, we can give an abstract specification of the arithmetic operations; we say
that a notion of ordinals has unique arithmetic if the type of implementations of the specification
is contractible. Cnf has addition, multiplication, and exponentiation with base ω (all unique),
Brw has addition, multiplication and exponentiation with every base (all unique), and Ord has
addition and multiplication. Finally, we have order-preserving embeddings Cnf ↪→ Brw ↪→ Ord.

Details and Formalisation Full details: arxiv:2104.02549. We have formalised our results
in cubical Agda: https://bitbucket.org/nicolaikraus/constructive-ordinals-in-hott.
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Abstract

Proof assistants provide users with a wide variety of tactics, but hardly any clear
mechanisms for modular proof extensibility. Oftentimes, entire developments are copied
with minor changes, and connected developments grow apart due to untracked changes.
We aim to solve this problem by implementing a modular, family-polymorphic system
for proof extensibility in Coq. As opposed to most existing work, our solution will be
an extension to Coq theory (the Calculus of Inductive Constructions), and will be made
accessible to the user via a Coq plug-in.

1 Introduction

Theorem provers such as the Coq Proof Assistant [1] allow us to design and develop mathe-
matical models and write proofs about them. While most proof assistants offer a wide pool
of proof tactics, extensibility of existing proofs is not usually a built-in feature. Any changes
to a model’s definitions, or simply adding constructors to an inductive data type, can require
a lengthy propagation of those changes through existing lemmas and proofs. Even worse, the
“old” development is often copied and pasted with minor changes. This creates a lot of dupli-
cated code and unintentionally disjoint developments. Any further changes made in the “old”
development will have to be manually implemented in the “new” development. In another
scenario, we may have an abstract base framework which can be instantiated in different ways
to produce derived frameworks. Ideally, we should be able to re-use proofs about the base
framework in these instances, as opposed to verifying every derived framework from scratch.
We hope that our family polymorphic framework can solve such extensibility problems and
ultimately inspire built-in extensibility support in proof assistants.

2 Background on Family Polymorphism

The concept of family polymorphism was introduced by Ernst in 2001 [6], as a way to achieve
safety and flexibility in multi-object systems. This is best illustrated by a method call example.
Consider a single-object scenario: object x (an instance of class X) invokes some method
m(...). In this case, we need only make sure that the method definition for m is compatible
with class X. However, when another object instance y of class Y is added to the mix (e.g., as
an argument to m), we have to ensure the compatibility of m with respect to both classes X
and Y. Even worse, instances of X and Y can be instances of any subclasses of X and Y, and
not all subclasses may be compatible with each other. Having many separate definitions for
m is not a flexible solution. Instead, to ensure flexibility and safety, compatible classes can be
grouped into families. Classes within a family can safely interact with each other. Conversely,
members of different families are incompatible and should not interact. Then, through the use
of relative path types and late binding we can guarantee that only instances of classes from the
same family interact.
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3 Approach

In a similar fashion, we can imagine families of definitions and proofs. From any base family
we can create any number of derived families through inheritance. All the definitions and
proofs in the base family can be extended to yield the respective constructs for the derived
family. Constructs from different derived families will not interact with each other. The two-
fold advantage of family polymorphism still stands: the flexibility of extensible constructs is
combined with the guarantee of safe interaction within families.

To apply this approach to Coq, we must first translate the object-oriented notion of family
polymorphism to the functional, and then dependently typed, setting. We are currently build-
ing a modular, family-polymorphic system which can adapt to a functional setting with records
and (G)ADTs. Our approach is inspired by the class-based family polymorphism of Igarashi
et al. [8]. In our system, families are top-level structures which contain type definitions (rep-
resented by records) and function definitions (represented by lambda abstractions). We make
use of relative path types to ensure all interactions are within a family, like Ernst [6]. We also
track inherited family members through the use of linkages, in a similar fashion to Zhang et
al. [13]. A linkage allows us to concisely keep track of the entire family inheritance tree: newly
defined and extended types, newly defined functions, and re-defined functions with identical
signatures. A family linkage makes it easy for us to retrieve the proper (and compatible!) type
or function definition.

4 Related Work on Extensibility of Coq

Typeclasses in Coq [10] achieve extensibility through genericity, but cannot achieve the exten-
sions we have in mind (e.g., a model augmented by a case in an algebraic data type). Coq à
la carte [7] and Meta-theory à la carte [3, 4, 5] solve the expression problem [12] by encodings
and design patterns, without changing the Coq theory. We aim instead for an extension to
the Coq theory so that we can avoid verbosity. Relevant Coq plug-ins include Pumpkin Pi [9]
and Coq-Elpi [11]. The former repairs proofs over changed types (for changes represented as
equivalences) [9], while the latter allows for extending Coq with new commands and tactics,
and manipulating Coq terms with binders [11]. One way to achieve extensible pattern matching
– which is relevant to our extensibility goals – is via the use of first-class cases [2].

5 Future Work

Next, we will pinpoint desired extensibility features and design a set of strategies for modular
reuse in Coq. We will consider both extensibility of definitions and extensibility of proofs. We
should handle extensibility of existing definitions (adding cases to inductive data types or in-
ductive propositions) as well as creating new definitions. We should also achieve consistent and
flexible proof extension to accommodate the changed definitions. We should aim to reuse exist-
ing proofs with only minor additions (e.g., new proof subgoals for new cases). We should ensure
extensibility of pattern matching and ensure that matches in a derived family are exhaustive
(consider all new cases). When pattern matching in the base family, we must accommodate
future extensions. Although this can be done via a wildcard case in the base module, we may
not want such a catch-all in a derived module. We envision the handling of extra proof and
pattern match cases via Coq obligations. We will also consider more involved extensions such
as adding fields to a constructor, monadic return types, and changes in proof structure.
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Since the introduction of homotopy type theory [10] many implementations have emerged
[12, 11]. Recently, various directed type theories have been developed [4, 7], some of which build
up on homotopy type theory and also do not have a proper proof assistant support. We report
a work in progress on the implementation1 of a proof assistant for synthetic∞-categories based
on the type theory developed by Riehl and Shulman [7]. We highlight two of the challenges:
(i) interleaving computation with typechecking, and (ii) higher-order unification. The former
makes it hard to apply some common approaches to implementation of dependently typed
languages, while the latter is typically omitted in prototypes. We suggest a general approach
based on free monads and generalized de Bruijn indices that allows to address both problems.

Type theory for synthetic ∞-categories. Riehl and Shulman have introduced a type
theory with shapes [7] and, using a directed interval shape 2, were able to develop a synthetic
theory of (∞, 1)-categories within that type theory. Extension types [7, Figure 4] are central
for the type theory (e.g homA(x, y) is an extension type) and allow to reduce bookkeeping in
proofs due to the use of judgemental equality. However, that also makes them challenging to
implement in a proof assistant. Consider the following rule:

{t : I | φ} shape {t : I | ψ} shape t : I | φ ` ψ

Ξ | Φ | Γ ` f :
〈∏

t:I|ψ A
∣∣∣ φa〉 Ξ ` s : I Ξ | Φ ` φ[s/t]

Ξ | Φ | Γ ` f(s) ≡ a[s/t]

According to this rule to reduce f(s) it is sometimes enough to know the type of f and that φ[s/t]
holds, making computation depend on type information. This rule is featured in several proofs of
[7, Section 4], specifically it is used to verify judgemental equalities imposed by extension types.
For example, the following is an analogue of equivalence X → (Y → Z) ' Y → (X → Z), but
for dependent functions and extension types:

Theorem 1. [7, Theorem 4.1] If t : I | φ ` ψ and X : U , while Y : {t : I | ψ} → X → U and
f :
∏
t:I|φ Φx:XY (t, x), then〈∏

t:I|ψ

(∏
x:X Y (t, x)

)∣∣∣ φf〉 ' ∏x:X

〈∏
t:I|ψ Y (t, x)

∣∣∣ φλt.f(t,x)〉
Partial proof. From right to left we have h 7→ λt.λx.h(x, t). For this to typecheck we need to
verify that λt.λx.h(x, t) ≡ f , assuming φ. From the type of h and assuming φ we can deduce
that h(x) ≡ λt.f(t, x). From there we get λt.λx.h(x, t) ≡ λt.λx.f(t, x) ≡ f assuming φ.

In our prototype type checker, the statement and proof of Theorem 1 look like this:

∗Other people who contributed to this document include Benedikt Ahrens and Daniel de Carvalho.
1work in progress implementation can be found in a GitHub repository at https://github.com/fizruk/rzk

https://github.com/fizruk/rzk
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Theorem-4.1-right-to-left

: (I : CUBE) -> (psi : (t : I) -> TOPE) -> (phi : {(t : I) | psi t} -> TOPE)

-> (X : U) -> (Y : <{t : I | psi t} -> (x : X) -> U >)

-> (f : <{t : I | phi t} -> (x : X) -> Y t x >)

-> ((x : X) -> <{t : I | psi t} -> Y t x [phi t |-> f t x]>)

-> <{t : I | psi t} -> (x : X) -> Y t x [phi t |-> f t]>

:= \I -> \psi -> \phi -> \X -> \Y -> \f -> \h -> \t -> \x -> (h x) t

Here the user relies entirely on the proof assistant to typecheck this definition. The type-
checker has to apply the aforementioned computation rule which in turn relies on the type
information. This situation forbids a simple approach of evaluating terms to values before
typechecking as is sometimes done for dependently typed languages [5], if we do not want to
litter proofs with explicit type annotations.

Higher-order unification. Unification plays an important role in typechecking as well as
type and term inference. In presence of dependent types, some form of higher-order unification
is typically expected from the proof assistant to reduce explicit types in proofs. Even though
many higher-order unification algorithms exist [3, 6, 8], when prototyping a proof assistant an
extra effort is required to add this feature and, being non-trivial, it is often omitted, opting
out for a simpler implementation while limiting capabilities of a prototype. However, in a suffi-
ciently complex dependently typed language even small examples can be difficult to comprehend
without some type inference. For example, in the presence of type inference with higher-order
unification an earlier example could be simplified to something like this:

Theorem-4.1-right-to-left I psi phi X Y f

: ((x : X) -> <{t : I | psi t} -> Y t x [phi t |-> f t x]>)

-> <{t : I | psi t} -> (x : X) -> Y t x [phi t |-> f t]>

:= \h -> \t -> \x -> (h x) t

Free scoped monads. Free monads is one of the popular approaches to modelling side effects
(such as input/output) in embedded domain specific languages [13, 14]. Sometimes they are
also used to generate the type of expression trees [9], where binding operation corresponds to
substitution. When representing expressions, free monads provide flexibility, both in terms of
modular extensions [9] and annotations (such as source code location or type information).

For expressions with scopes (such as let-expressions or lambda abstractions) substitution
(implemented manually or via free monads) is not safe by default, meaning that a name capture
might happen. To avoid name capture de Bruijn indices [2] are commonly used. However,
generalized de Bruijn indices2 have also been used to keep track of scoping in types and also to
allow lifting entire subexpressions to further optimize substitution.

We propose a combination of these two techniques (free monads and generalized de Bruijn
indices) to simplify implementation of languages3, in particular dependently typed ones. Our
approach can be compared with the recent work on the type and scope safe universe of syntaxes
with binding [1]. We also show that it is possible to implement a generic higher-order unification
algorithm, based on Huet’s algorithm [3] for languages defined using our approach. We present
an implementation of this generic algorithm together with example definitions for languages
from untyped lambda calculus to basic homotopy type theory without higher inductive types
using the Haskell programming language.

2such as implemented in the bound package, available at http://hackage.haskell.org/package/bound
3or, at the very least, prototyping of such languages
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In 2007, Marek Zaionc coauthored two papers [3, 2], corresponding to two mod-
els of the calculus of implicative propositions and presenting the following paradox,
namely that asymptotically almost all classical theorems are intuitionistic, which is
called here Zaionc paradox. In the current paper, we focus on the model of [3], which
we call canonical expressions. They have been introduced by Genitrini, Kozik and
Zaionc [3] and more recently by Tarau and de Paiva [9, 10]. A canonical expres-
sion is a representative of a class of implicative expressions that differ only by the
name assigned to the variables. Whereas Genitrini, Kozik and Zaionc addressed the
mathematical aspect of this model, Tarau and de Paiva tried to explicitly generate
all the canonical expressions of a given size and faced up to combinatorial explo-
sion, because canonical expressions grow super exponentially in size. In this paper,
I check experimentally Zaionc paradox, adopting a Monte-Carlo approach to ob-
serve how this paradox emerges. Indeed I designed a linear algorithm to randomly
generate canonical expressions. Therefore I can consider large samples of random
canonical expressions and count how many canonical expressions in that samples
are intuitionistic theorems or classical theorems. A long version of this document
is [6] and the programs used in this paper can be found on GitHub.

The model of canonical expressions

We call canonical expression the representative of an equivalence class of binary
expressions up-to renaming of variables. In other words, a canonical expression is
a binary expression, in which variables are named canonically, from right to left.
That means that the rightmost variable is x0, then if processing to the left, the next
new variable is x1, then the next new variable, which is neither x0 nor x1 is x2 etc.

Since canonical expressions are pairs of well-known combinatorial objects, namely
binary trees and congruence classes, we can use well-known algorithm to generate
each constituents of the pairs.

Random binary trees For generating random binary trees I use Rémy algorithm [7]
which is linear. This algorithm is described by Knuth in [4] § 7.2.1.6 (pp. 18-
19). I have taken his implementation. The idea of the algorithm is that a
random binary tree can be built by iteratively and randomly picking a node
or a leaf in a random binary tree and inserting a new leaf either on the left or
on the right.

Random restricted growth string For generating random partitions or random
restricted growth strings an algorithm due to A. J. Stam [8] and described by
Knuth in [5] § 7.2.1.3 (p. 74) was implemented.

Selecting intuitionistic theorems

Once a canonical expression is randomly generated, one has to check whether it is
an intuitionistic theorem, a classical theorem, or not a theorem of those sorts. For
that, heuristics are applied.

https://github.com/PierreLescanne/CanonicalExpression
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Simple intuitionistic theorems A simple intuitionistic theorem is a theorem, in
which the goal is among the premises.

Elim intuitionistic theorems Let us call Elim intuitionistic theorem (for →-
eliminating theorem), a theorem which is a direct application of the modus
ponens aka →-elimination.

Easy intuitionistic theorems Let us call Easy intuitionistic theorems, expres-
sions that are simple or Elim.

Removing trivial premises In intuitionistic logic if a premise is a theorem, it
can be removed.

Silly intuitionistic theorems A silly theorem is a theorem of the form ... → p →
... → p. Detecting such expressions has a cost, I decided to no detect silly
intuitionistic theorem recursively by only after easy subexpressions have been
removed recursively.

Cheap intuitionistic theorems Let us call cheap intuitionistic theorems, expres-
sions that are silly or easy after removing (recursively) easy premises.

Classical tautologies

The selection of classical tautologies is as usual, by valuations. Indeed if all the
valuations of a given expression yield True this expression is a classical tautology.
But this method is obviously intractable [1]. It should be applied only to expressions
on which other more efficient methods do not work and with a limitation of the
number of variables in expressions1.

Trivial non classical propositions Before applying valuations, some trivial non
classical propositions must be eliminated. An expression e is trivially non classical
if its premises have a goal which is not x0 or are simple with goal x0.

Results

I run my Haskell program on a sample of 20 000 randomly generated canonical
expressions of size 100 and I found 759 classical tautologies, among which 733 were
cheap expressions, hence guaranteed to be intuitionistic theorems. Therefore the
ratio of cheap theorems over classical theorems is 96.6%. Are the 26 classical non
cheap theorems still intuitionistic? The experience cannot tell. I presume that there
are likely more than 733 intuitionistic theorems and therefore more than 96.6% of
classical theorems that are intuitionistic.

Conclusion

Algorithms for random generation presented in The Art of Computer Program-
ming [4, 5] allow implementing Monte-Carlo methods that confirm experimentally
Zaionc paradox and show that the convergence2 of the set of intuitionistic theo-
rems toward this of classical theorems is faster than expected from the asymptotic
approximations proposed by the theory [3]. Indeed, whereas I compare the set of
cheap intuitionistic theorems with this of classical theorems, Genitrini, Kozik and
Zaionc compare the set of simple intuitionistic theorems with the set of non simple
non tautologies. This is a too rough approximation. This suggests to complete the
analytic development to justify this faster convergence.

1In my experience with canonical expressions of size 100 the variables should not exceed 30
which is rare enough to affect no classical theorem.

2As the size of the expressions grows.

https://github.com/PierreLescanne/CanonicalExpression
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Hermenegildo and Pedro López-Garćıa, editors, Logic-Based Program Synthesis and
Transformation - 26th International Symposium, LOPSTR 2016, Edinburgh, UK,
September 6-8, 2016, Revised Selected Papers, volume 10184 of Lecture Notes in
Computer Science, pages 240–255. Springer, 2016. URL: https://doi.org/10.1007/
978-3-319-63139-4_14, doi:10.1007/978-3-319-63139-4\_14.

[10] Paul Tarau and Valeria de Paiva. Deriving theorems in implicational linear logic,
declaratively. In Francesco Ricca, Alessandra Russo, Sergio Greco, Nicola Leone,
Alexander Artikis, Gerhard Friedrich, Paul Fodor, Angelika Kimmig, Francesca A.
Lisi, Marco Maratea, Alessandra Mileo, and Fabrizio Riguzzi, editors, Proceed-
ings 36th International Conference on Logic Programming (Technical Communica-
tions), ICLP Technical Communications 2020, (Technical Communications) UNI-
CAL, Rende (CS), Italy, 18-24th September 2020, volume 325 of EPTCS, pages 110–
123, 2020. URL: https://doi.org/10.4204/EPTCS.325.18, doi:10.4204/EPTCS.

325.18.

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
http://dx.doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-540-68103-8_7
https://doi.org/10.1007/978-3-540-68103-8_7
http://dx.doi.org/10.1007/978-3-540-68103-8_7
https://hal.archives-ouvertes.fr/hal-03197423v1
https://doi.org/10.1051/ita/1985190201791
http://dx.doi.org/10.1051/ita/1985190201791
http://dx.doi.org/10.1051/ita/1985190201791
https://doi.org/10.1016/0097-3165(83)90009-2
https://doi.org/10.1016/0097-3165(83)90009-2
http://dx.doi.org/10.1016/0097-3165(83)90009-2
https://doi.org/10.1007/978-3-319-63139-4_14
https://doi.org/10.1007/978-3-319-63139-4_14
http://dx.doi.org/10.1007/978-3-319-63139-4_14
https://doi.org/10.4204/EPTCS.325.18
http://dx.doi.org/10.4204/EPTCS.325.18
http://dx.doi.org/10.4204/EPTCS.325.18


A Practical Implementation of Twin Types
Víctor López Juan

Chalmers University of Technology, Gothenburg, Sweden
victor@lopezjuan.com

Abstract

In a previous publication [8], an approach to higher-order unification in a dependently-
typed setting is described and benchmarked on a specific case study by means of a proto-
type. In this follow-up we evaluate the practicality of our approach by implementing it in
an existing proof assistant (Agda), and benchmarking it on a selection of projects, includ-
ing the Agda standard library. This solves some bugs in the current Agda implementation,
with no large effect on performance and a limited amount of changes to the code of Agda.

When defining functions in a dependently-typed proof assistant, users may mark some
function arguments as implicit, either for readability or for code writing speed. The type
checker needs to infer these arguments when the function is used.

Inference of implicit arguments in proof assistants such as Coq, Lean, Idris or Agda is done by
replacing the implicit arguments with placeholders of an appropriate type (i.e. metavariables),
and applying the typing rules to produce a series of unification constraints. A unification
constraint consists of at least a pair of terms 𝑡 and 𝑢 in a typing context Γ (Γ ⊢ 𝑡 ≈ 𝑢). A
constraint is solved by assigning terms to the placeholders so that both sides of the constraint
become equal (Γ ⊢ 𝑡 ≡ 𝑢). A constraint of the form Γ ⊢ 𝛼 ≈ 𝑡 can be solved by assigning 𝛼 ≔ 𝑡.
The creation of ill-typed terms can be avoided by either check that 𝑡 has the right type before
assigning it to 𝛼, which could incur a performance penalty; or by ensuring that both sides of
every constraint have the same context and type, which is the preferred approach.

Binder problem A common problem in dependently-typed unification arises when unifying
binders. For instance, a constraint of the form Γ ⊢ (𝑥 ∶ 𝐴) → 𝐵 ≈ (𝑥 ∶ 𝐴′) → 𝐵′ may be solved
by separately unifying the domains and the codomains. However, the types 𝐵 and 𝐵′ live in
different contexts (Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 type and Γ, 𝑥 ∶ 𝐴′ ⊢ 𝐵′ type). It is not self-evident what the
type of 𝑥 should be in Γ, 𝑥 ∶ ? ⊢ 𝐵 ≈ 𝐵′ type.

Spine problem Consider an irreducible constant 𝑐 ∶ (𝑥 ∶ 𝐴) → (𝑦 ∶ 𝐵) → 𝐶 (e.g. a data
constructor). The spine problem arises for instance when solving Γ ⊢ 𝑐 𝑡 𝑢 ≈ 𝑐 𝑡′ 𝑢′, which is
done by unifying Γ ⊢ 𝑡 ≈ 𝑡′ ∶ 𝐴 and Γ ⊢ 𝑢 ≈ 𝑢′. Until 𝑡 and 𝑡′ can be unified, 𝑢 and 𝑢′ may
lack a common type. This may threaten the soundness of ensuing metavariable instantiations.

Coq In our tests, Coq [17] will refuse to unify the domain before the codomain, thus avoiding
the binder problem. Ziliani and Sozeau [18] argue that in the context of Coq, constraint
postponement is not crucial, and may even worsen the performance of the algorithm and make
it harder to debug. The Lean proof assistant behaves similarly to Coq. The spine problem in
Coq is also avoided by solving the constraints in a suitable order.

Agda In Agda constraints are well-typed modulo other constraints being solved. The presence
of ill-typed terms may however cause issues, as described by Norell and Coquand [12, 14]. To
mitigate them, the type of the variable is replaced by a blocked constant. That is, Γ, 𝑥 ∶ 𝑝 ⊢
𝐵 ≈ 𝐵′, where 𝑝 reduces to 𝐴 (𝑝 ⇝ 𝐴) when Γ ⊢ 𝐴 ≡ 𝐴′. The resulting terms are still
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CPU (s) Memory (MB)
kLOC Ours Baseline Ours Baseline

Prelude 12.6 110±1.2 (+5.1…+1.8%) 106±1.2 573±15 (+6.0…−1.8%) 562±17
Std-Lib 93.6 531±7.8 (+0.7…−2.8%) 537±5.3 1690±12 (−3.7…−5.3%) 1770± 8
HoTT 29.7 223±2.2 (+5.9…+3.1%) 214±2.1 1910±36 (−2.6…−7.4%) 2010±35

Table 1: Performance when type-checking some Agda projects, namely the Agda prelude [15],
the Agda standard library [4], and “Introduction to HoTT” [16]. The size in thousands of
lines of code is given, followed by estimations of the median time and memory used by our
implementation [9] and the percentual variation with respect to the version of Agda it is based
on [2] (𝑛 = 40, 95% CI). We observe no large differences between the two implementations.

potentially not well-typed, which in some known cases causes the type-checker to crash [10].
Agda mitigates the spine problem in a similar way, but it is not a complete solution [3, 13].

Idris 2 Idris 2 is a programming language focused on type-driven development. The binder
problem is solved by taking 𝑥 ∶ 𝐴, and replacing all occurrences of 𝑥 in 𝐵′ by a blocked constant;
i.e. Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ≈ 𝐵′[𝑝/𝑥] type, where 𝑝 ⇝ 𝑥 when Γ ⊢ 𝐴 ≡ 𝐴′. As opposed to replacing
the type of the variable, as done in Agda, blocking the variable produces well-typed terms.
This straightforward approach was however not flexible enough to support some existing Agda
code [1], and does not address the spine problem.

An approach based on twin types Gundry and McBride [6, 5] propose a solution based
on assigning two types to each variable, and annotating each occurrence of the variable in a
term to distinguish which type applies. A streamlined variant of their approach without the
annotations [8, 7] has been implemented in an existing prototype [11] and used to type-check
some specific examples. It remained to show that the approach scales to a larger proof assistant.

Evaluation results We have implemented the method we described in previous publica-
tions [8, 7] (with suitable extensions) into the Agda type checker [2]. The implementation took
18 weeks of work at 25 hours per week. Less than 2700 lines of code (6.7% of the codebase)
were added or modified, partly thanks to keeping the term syntax intact. Implementing our
approach in Agda fixes some long-standing bugs either outright [10] or without resorting to
workarounds [3, 13]. We have tested our implementation [9] on three large Agda projects,
yielding comparable CPU and memory usage (Table 1). Note that hash consing, which was
used for performance in a previous prototype [8, 7], was not required here.

Limitations This approach does not preserve all the power of the existing Agda implemen-
tation. For instance, four instances of implicit arguments in the standard library which were
previously inferred by Agda had to be given explicitly. For other projects with different coding
styles, the figure may be larger. Support for Agda’s cubical type theory features is pending.

Conclusion Despite the limitations, heterogeneous higher-order unification is a viable ap-
proach for type-directed inference of unique solutions for implicit arguments. Performance is
comparable to the approach used in Agda, the amount of changes to the Agda implementation
is limited, and some long-standing bugs in Agda are fixed.

2
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We present some progress towards a calculus in which container-like data structures exhibit
functoriality by construction, equipped with an equational theory in which functor laws hold on
the nose. Specifically, we work in a bidirectional setting [PT00, DK20, McB], where types for
introduction forms are checked (T 3 t) and elimination forms have types synthesized (e ∈ S).1

To embed the latter in the former, we have formerly given the ‘change of direction’ rule

e ∈ S S = T
T 3 e

but we have now come to see this as a missed opportunity. This is the one place where we know
both the type we have and the type we want, so we might exploit this richness of information to
explore more interesting ways to get from one to the other than making sure the types match
and doing nothing: that is but the identity for a category of adapters which offer functorial
actions on data.

Our intention is to build a dependent type theory this way, but the concept already makes
sense in a simply typed setting, so let us start there, for pedagogical purposes. Types are given
by the following grammar:

σ, τ ::= 1 | σ × τ | σ → τ | τ∗

Our terms are split between the constructions and the computations, but at the point where
they meet, we now allow an adapter which can be blank.

construction s, t ::= ? | (s, t) | λx. t | [] | [t] | s++ t | a e

computation e, f ::= x | outl e | outr e | f t | foldrτ t (x. y. s) e | (t : τ)

adapter a, b ::= | s× t | s→ t | t∗

Note that we construct lists with ++ with intent to enforce the equational theory of free monoids.
As well as the blank identity adapter, we respect functoriality of type constructors by offering

mapping over them as an adapter. The ‘change of direction’ now becomes

e ∈ σ σ |a〉 τ
τ 3 a e σ |〉σ

σ → σ′ 3 s τ → τ ′ 3 t
σ × τ |s× t〉σ′ × τ ′

σ′ → σ 3 s τ → τ ′ 3 t
σ → τ |s→ t〉σ′ → τ ′

σ → τ 3 t
σ∗ |t∗〉 τ∗

and the fact that we know both the source and the target type for the adapter gives us an easy
way to check the action on elements without resorting to type annotation or guesswork. For
reasons of space, we will focus on list adapters in the rest of this abstract.

The spirit of bidirectional type systems is that types are present when there is work to be
done, but vanish from normal forms. We call a term (t : τ) a radical by analogy with organic
chemistry, because its type gives it the power of computation. (We present an equational theory
which is also bidirectionally typed.) E.g., in the β-rule for functions, a function type is broken

1Diverse notations for bidirectional typing judgements abound in the literature: we choose to keep time
flowing left to right. We omit global contexts but give local context extensions.
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down and its pieces used to create radicals which may compute further. Radicals lose their
types when computation is finished.

(λx. t : σ → τ) s = (t{(s : σ)/x} : τ) ∈ τ σ 3 (s : σ) = s

When adapters collide, there is necessarily a ‘type in the middle’, which normalisation must
remove. Hence it is vital that adapters compose. Fortunately, the point of functoriality is to
respect composition. Identity adapters are absorbed and maps fuse.

e ∈ ρ ρ |a〉σ |b〉 τ = ρ |c〉 τ
τ 3 b (a e : σ) = c e ρ∗ |s∗〉σ∗ |t∗〉 τ∗ = ρ∗ |(λx. (t : σ → τ) ((s : ρ→ σ)x))∗〉 τ∗

The type in the middle, σ∗, is removed by composition, but its components move to potential
β-reducts within the fused adapter. The way adapters must compose is strongly reminiscent of
the way transitivity must be admissible in coercive subtyping [Luo99], and indeed, the blank
adapter might very well generalise to coercions rather than just identity, especially with functor
laws now holding as envisaged by Adams and Luo [LA08].

Of course, adapters act on constructions, making use of both types.

τ∗ 3 t∗ ([] : σ∗) = [] τ∗ 3 t∗ ([s] : σ∗) = [(t : σ → τ) s]

τ∗ 3 t∗ (ss++ ss′ : σ∗) = t∗ (ss : σ∗) ++ t∗ (ss′ : σ∗)

However, they may also fuse with eliminations, acting elementwise in the step case.

e ∈ ρ∗

foldrτ tn (x. y. tc) (t∗ e : σ∗) = foldrτ tn (w. y. tc{(t : ρ→ σ)w/x}) e ∈ τ

Normalisation thus pulls mapping towards the change of direction, inwards through constructions
by their action, and outwards through computations by fusion and potentially naturality.

We have implemented a decision procedure for our equational theory as a two phase process
in the style of normalization-by-evaluation, with type information flowing the same way as in
the typing rules: β-reduction and action on constructors happen in the first phase, η-expansion
in the second. We have some flexibility about when to compose adapters and test for identity:

x : τ ` τ 3 (t : τ → τ)x = x

τ∗ |t∗〉 τ∗ = τ∗ |〉 τ∗

We chose to do the former in the first phase and the latter (with its attendant type-directed
η-expansion) in the second. E.g., if τ = 1, t is certainly the identity pointwise by the η-rule for
1, so any mapping adapter must be the identity. Meanwhile, mapping swapping for nontrivial
σ × τ is not the identity, but when two map-swap adapters compose, they yield the identity.

The upshot is that the usual βη-equality is extended with monoid, functor and map-fusion
laws for lists, rationalising earlier work on tidying neutral terms [AMB13], adding clarity about
the flow of type information. We thus step beyond the old habit of implementing algorithmic
equality for open terms by just letting an untyped evaluator for closed terms get stuck at
free variables. While type erasure remains desirable for the execution of closed programs, the
presence of type information in open computation is a currently underexploited resource from
which we are only beginning to profit.

Knocking at the door is the fact that there are categories other than that of types and
functions, and thus that datatypes could always yield functorial adapters, with respect to at
least equality structure. Our current notions of dependent inductive datatype respect at most
equality. Adapters show that we can respect nontrivial categorical structure intensionally and
by construction, when we do so deliberately.

2
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Recent tools for separation logic have enabled formal verification of challenging fine-grained
concurrent programs. However, currently one needs to choose between tools with good automa-
tion [3, 8, 9], and tools that are foundational and expressive [5, 7].

An example of a tool with good automation is Caper [3]. While Caper can be used to verify
challenging fine-grained concurrent programs with little user assistance, its trusted code base is
large. Caper is a standalone tool (written in Haskell) whose logic has not been mechanized, and
which uses SMT solvers as trusted oracles. On the other hand, there is Iris [5]—a framework for
(higher-order) concurrent separation logic embedded in the Coq proof assistant. While Iris is
expressive, proofs are mostly manual: they are developed interactively using tactics that come
with the Iris Proof Mode [6]. The trusted code base for Iris is small: only Coq’s proof checker
and the programming language’s operational semantics need to be trusted.

We aim to arm Iris with strong automation to obtain the best of both worlds. Concretely, we
are developing tactics that entirely solve easy goals, and make good partial progress on difficult
goals. This means we are looking for automation that is goal directed (to ensure efficiency),
and that does not rely on backtracking (so we do not end up in an unprovable state).

Iris is a challenging target for automation because of its expressive logic. Particularly, Iris
comes with ghost resources to model protocols on (concurrent) data structures. Ghost resources
are similar to the points-to resource ` 7→ v, but they are not tied to the syntax of the program.
A ghost resource with name γ and value a is denoted as a

γ
. Changes to ghost resources are

handled through the ‘fancy update’ |VE1 E2 , a modality which behaves like a strong indexed
monad. Furthermore, Iris comes with invariants for sharing resources. Invariants with name N
and resource P are denoted as P

N
. Invariants P

N
can be duplicated (i.e., shared between

threads), but ownership of P can only be obtained for the duration of atomic steps.

The expressivity of Iris plays against us, as many of its proof rules are not goal directed. In
various Iris proofs, ghost resources are manipulated to precisely the right state, just before it
becomes apparent that this coincides with the proof obligation. At that point, the manipulation
is often no longer possible. A selection of Iris’s proof rules is shown in Figure 1.

ghost-update

a; b b
γ ` |VQ

a
γ ` |VQ

wp-faa
` 7→ (n+m) ` Q

` 7→ n ` wpE FAA(`,m) {Q}

wp-atomic
atomic(e)

|VE1 E2wpE2
e
{
|VE2 E1Q

}
` wpE1

e {Q}

inv-open1

atomic(e) P
N ∗ .P ` wpE e {.P ∗Q}

P
N ` wpE]N e {Q}

inv-open2

.P ∗ (.P ≡−∗E1 E1]N True) ` |VE1 E2Q

P
N ` |VE1]N E2Q

Figure 1: A selection of Iris’s proof rules.
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Example and approach. Suppose we wish to verify the increment operation of a counter
module. We will be working in a language with at least an atomic Fetch And Add (FAA)
instruction operating on locations in a heap. If the value of the counter is stored in location `,
we can define incr(`) := FAA(`, 1). The implementation of our module is thus very simple: it
uses the available FAA instruction to atomically increment the value at location ` by 1. We can
prove the specification ` 7→ n ` wp incr(`) {` 7→ (n+ 1)}, but this is not very useful. It will not
allow us to prove that executing two increments in parallel increments the counter by 2, since
that specification requires both threads to have exclusive access to ` 7→ n.

A more useful specification would be as follows, where q ∈ (0, 1] ∩Q:

I := ∃n. ` 7→ n ∗ •n γ
, I

N ∗ ◦(q,m)
γ ` wp incr(`)

{
◦(q,m+ 1)

γ
}
.

Here •· and ◦(·, ·) are some of Iris’s ghost resources, and in this context ◦(q,m)
γ

will
mean “some thread has witnessed the counter to be incremented with m”. The specification
above, together with this property of ◦(q,m)

γ
, makes it possible to prove that executing two

increments in parallel increases the counter by 2.
So how would a typical proof of this specification in Iris go? The FAA instruction requires an

` 7→ − resource, which is currently not available. Therefore, we first use inv-open1 to take the

resource I out of the invariant I
N

. After eliminating the existential, we are in shape to apply
wp-faa. But if we look ahead a bit, we see that our physical resource ` 7→ (n+ 1) will be out
of sync with our logical resource •n, meaning that we will not be able to restore I. Therefore,
we first use ghost-update to update •n γ ∗ ◦(q,m)

γ
to •(n+ 1)

γ ∗ ◦(q, (m+ 1))
γ
. After

this step we can apply wp-faa, restore invariant I and prove the postcondition.
We have devised a proof-search algorithm, implemented as a Coq tactic, that can automati-

cally prove the above specification. We use ideas from logic programming [2, 4] and bi-abduction
[1]. Our key ideas are:

• We rewrite Iris’s proof rules to make them amenable for goal-directed search

• We postpone introduction of existentials and logical updates as long as possible

• We use bi-abduction (keying both on the goal and hypotheses) to find the correct proof rules

In the example above, our algorithm uses a derived rule combining wp-atomic and wp-faa
to go to an intermediate goal:

I
N ∗ ◦(q,m)

γ ` |V> ?∃n. l 7→ n ∗ (l 7→ (n+ 1) ≡−∗? > ◦(q, (m+ 1))
γ
).

It is crucial that we do not introduce the ∃n in the goal; at this point we do not know the n for
which ` 7→ n, since it is still existentially quantified in the invariant I. The bi-abduction part

of our proof search then finds that I
N ` |V> >\N ∃n. l 7→ n ∗ ? , by applying inv-open2 and

eliminating the existential. The proof can then continue by using the acquired extra ? resource,
and the same bi-abduction algorithm can later infer the required update from •n to •(n + 1),
which will require the ◦(q,m) resource, produce a ◦(q,m+ 1) resource, and finish the proof.

The tactic additionally performs no global backtracking. We use backtracking inside the
algorithm to find lemmas, but stick with any lemma we find. This works because we write
lemmas in a particular format, such that there is exactly one way to make progress.

Conclusion. Our tactic is able to prove correct various small but tricky programs that use
fine-grained concurrency. For example, the specifications of a spin lock, ticket lock, counter
module and concurrent stack can all be proven with little user assistance. The implementation
relies on Coq’s type class mechanism to find appropriate lemma’s, and is built on top of the
Iris Proof Mode. Our next steps will be a thorough comparison with other tools, larger case
studies, and an investigation into dealing with notions like logical atomicity.
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Abstract

We investigate containers and polynomial functors in Quantitative Type Theory and
give initial algebra semantics of inductive data types in presence of linearity. Reasoning
by induction is supported and equivalent to initiality also in the linear setting.

Quantitative Type Theory (QTT) Quantitative Type Theory [Atk18, McB16] combines
linear and dependent types, allowing for tracking and reasoning about resource usage of pro-
grams. Such a combination is non-trivial as there is no obvious answer how to treat terms
occurring in type formation. Previous attempts include the Linear Logical Framework [CP02],
and [KPB15], based on Benton’s Linear/Non-Linear logic [Ben95], in which the context is split
into intuitionistic and linear parts and each type is allowed to depend on only one of the two.
QTT differs by maintaining a single context where each variable is annotated with resource
information. For example, consider the judgement:

n
0
: Nat, x

2
: Fin(n), f

1
: Fin(n)

2→ Fin(n) ` f(x) : Fin(n)

The quantities on the left of the turnstile (taken from a fixed semiring R) denote how many
times the variables must be used in the scope. The term on the right is tacitly annotated with
1 to denote computational relevance. The core insight is that contemplating variables in a type
is always possible, even for already consumed ones. Thus we get unrestricted usage in type
formation and semiring-controlled usage for terms present at run time. Evident in the previous
example is also that resource tracking is integral to type formers in the system, e.g. a function

f of type f : (x
ρ
: A)→ B must be supplied with ρ many copies of its argument, and the second

component of the dependent pair t : (x
ρ
: A)⊗B requires ρ many copies of the first component.

Polynomial functors An ad-hoc approach of writing out introduction and elimination rules
for each data type is cumbersome and error-prone. A principled solution to adding inductive
data types in a traditional setting is provided by the theory of polynomial functors [HJ98] and
containers [AAG03]. We build the syntactic category of closed types and linear functions in
QTT and define polynomial functors on it. We can then systematically derive the appropriate
elimination rule for an initial algebra of the functor.

Proposition 1. Let C be the category of closed types and linear functions: its objects are types

` X, and morphisms are functions ` f : X
1→ Y . For fixed ` A type and x

0
: A ` B type, the

mapping FA,B(X) = (a
1
: A)⊗ (B[a]

1→ X) is a functor C → C.

We call any functor isomorphic to one of the form FA,B a quantitative container. The above
proposition can be generalized to types and functions over an arbitrary, fixed context of the
shape Γ = 0Γ, i.e. where all variables are annotated with 0.

∗Supported by the UK National Physical Laboratory Measurement Fellowship project Dependent types for
trustworthy tools.



Quantitative polynomial functors G. Nakov and F. Nordvall Forsberg

Induction principles from initiality Recall that an F -algebra for an endofunctor F : C →
C is a pair (A, a : F (A) → A), where A is an object of C and a is a C-morphism. A morphism
between F -algebras (A, a) and (B, b) is a map f : A→ B in C, such that f ◦ a = b ◦ F (f). We
now turn to the equivalence of the induction principle and existence of an initial algebra:

Theorem 2. Let W := (W, c : FA,B(W )
1→ W ) be an FA,B-algebra. W is initial iff the

following induction principle holds:

w
0
: W ` P `M : (a

1
: A)→ (h

0
: B[a]

1→W )→ ((b
1
: B[a])→ P (h(b)))

1→ P (c(a, h))

` elim(P,M) : (x
1
: W )→ P [x]

Proof (sketch). We alter the standard construction [AGS17], emphasizing on the role of linear-

ity. Assuming that W is initial, build an FA,B-algebra for the dependent tensor type (w
0
: W )⊗P

and get the unique mediating morphism fold : W
1→ (w

0
: W )⊗P by initiality. Compose with the

second projection snd : (x
1
: (w

0
: W )⊗ P )→ P [fst(x)] to get a map (x

1
: W )→ P [fst(fold(x))].

Notice that the use of second projection is admissible

due to the annotation of the first component w
0
: W

— we are free to dispose of w. We need to show that
P [fst(fold(x))] = P [x] for every x : W , but as this is
a type equality, unrestricted use of terms is permissible.

The map fst : (w
0
: W )⊗P 1→W is an FA,B-algebra mor-

phism, and thus the composite fst ◦ fold : W
1→W is also

one (see diagram on the right). Thus fst ◦ fold = id holds
by uniqueness of the mediating morphism out of W .
The converse direction follows analogously.

FA,B(W ) W

FA,B((w
0
: W )⊗ P ) (w

0
: W )⊗ P

FA,B(W ) W

c

fold

fst

c

Inductively generated polynomial functors However, there is a caveat — most quantita-
tive versions of standard data types are not quantitative containers in the above sense. Consider,
for example, the natural numbers, the initial algebra of the polynomial functor F (X) = 1+X,
or binary trees — the initial algebra of G(X) = A+X×X. Their representations in “container
normal form” crucially depend on isomorphisms (0 → X) ∼= 1 and (Bool → X) ∼= X × X,

respectively, but their QTT counterparts do not hold: (0
1→ X) 6∼= I and (Bool

1→ X) 6∼= X⊗X.
Thus we resort to generating the class of quantitative polynomial functors inductively by:

F,G ::= Id | ConstA | F⊗G | F⊕G | F &G | A 1→X
Theorem 2 still holds for that class with the induction principle reformulated as:

w
0
: W ` P `M : (w

0
: F (W ))⊗ F̂W (P,w)→ P (c(w))

` elim(P,M) : (x
1
: W )→ P [x]

where F̂W is an appropriately defined predicate lifting F̂X : (P : X → Type)→ (F (X)→ Type).
The proof can be carried out by using a distributive lemma for the dependent tensor and the
predicate lifting:

Lemma 3. F ((w
0
: W )⊗ P ) ∼= (w′ 0

: F (W ))⊗ F̂W (P ).

Initial algebras of finitary polynomial functors (i.e., without the exponential A
1→−) can be

constructed in the graph model [Atk18] based on linear realisability [Hos07]. In the future, we
hope to extend this also to infinitary polynomial functors.
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Interpreting Twisted Cubes as Partially Ordered Spaces
Gun Pinyo

University of Nottingham

Overview: Twisted cubes are a new kind of combinatorial shapes introduced in [9]. The idea
of twisted cubes originates from an ambition to modify the cubes used in cubical type theories
(e.g. [2, 3, 1]) in such a way that they are compatible with directed type theories (e.g. [5, 8, 10, 7]).

This abstract introduces a geometric representation of twisted cubes as partially ordered spaces
(or pospaces for short), which are topological spaces each equipped with a closed partial order.
In other words, this abstract “geometrically realises” twisted cubes from their combinatorial
shapes to their (directed) geometric shapes, thus, they can be visualised in the same way as
other geometric shapes for higher structures [6] such as simplices and (standard) cubes.

It turns out that the resulting pospace definition of twisted cubes can be quite similar to the
pospace definition of standard cubes (which is also defined here for comparison purposes). In
particular, the underlying topological spaces of both kinds of cubes are the same (up to linear
transformation). This suggests the potential syntax of the “twisted cubical type theory” to be
defined based on one of the cubical type theories [2, 3, 1] equipped with a further restriction
associated with the partial orders of twisted cubes.

Partially Ordered Spaces: Topological spaces alone are not expressive enough to fully
encode the representation of twisted cubes because paths in twisted cubes are not necessary
reversible, therefore, our suitable definition of spaces must have some sense of direction.

Definition 1. A partially ordered space [4] is a topological space X equipped with a partial
order (6) on the set of points of X such that { (x, y) ∈ X2 | x 6 y } is a closed set in X2.

Definition 2. A dimap f : X → Y between two pospaces is a continuous map between the
underlying topological spaces that preserves the partial order, i.e. if u 6X v then f(u) 6Y f(v).

Example 3. For each dimension n ∈ N, the Euclidean space Rn
top can be upgraded to the Eu-

clidean pospace Rn
pospc, where (~x 6

Rn
pospc

~y) :=
∧n−1

i=0 (xi 6 yi) with notation ~p := (p
0
, p

1
, . . . , p

n−1
) .

Metric Spaces with Real-Valued Continuous Functions: Rather than manually defining
pospaces, we will generate each of them based on a metric space (X, d) together with a continuous
function f : X → Rtop .

Definition 4. (6f ) is a relation on X such that (x 6f y) := d(x, y) 6 (f(y)− f(x)) .

Lemma 5. Given the context above, the relation (6f ) is a closed partial order.
Definition 6. Given the context above, mkPospc(X, f) is defined to be a pospace consisting

of the topological space X, together with the partial order (6f ) restricted to X.

Embedding Graphs to Pospaces: We require that our resulting pospaces will be compatible
with �n

graph and 1n
graph which are defined to be the irreflexive version of graphs Cn and Tn in [9].

Definition 7. Given an acyclic graph G = (V,E), we define mkGraphPospc(G) as a pospace
(V ∗, E∗) where V ∗ is the discrete space from V and E∗ is the reflexive transitive closure of E.

Definition 8. Given an acyclic graph G and a pospace P , we define canEmbed(G,P ) to be
a proposition stating that there exists a dimap from mkGraphPospc(G) to a pospace P such
that the underlying function is injective and contains every extreme point of P in its image.
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Pospaces of Standard Cubes: ranknstd approximates Rn
pospc, thus, we define �n

pospc by it.

Definition 9. We define ranknstd : Rn → R by setting ranknstd(~x) :=
∑n−1

i=0 xi .

Lemma 10. (x 6Rn
pospc

y) implies (x 6ranknstd
y), for all x y ∈ Rn; and also vice versa if n 6 2.

Definition 11. �n
top, the topological space of standard n-cube, is defined to be a subspace

of Rn
top where ~x ∈ �n

top iff (0 6 xi 6 1) i.e. xi ∈ [0, 1] for all i ∈ N such that i < n.
Definition 12. �n

pospc, the pospace of standard n-cube, is defined as mkPospc(�n
top, rank

n
std).

Theorem 13. The proposition canEmbed(�n
graph,�

n
pospc) holds where the underlying function

embnstd : {0, 1}n → [0, 1]n is defined to be the inclusive from {0, 1}n to [0, 1]n.

Pospaces of Twisted Cubes: The algorithm of twisted cubes that decides the directions of
graph edges in 1n

graph involves the boolean operator “iff” (i.e. “not xor”) on bits “0” and “1”. This
can be transformed to the multiplicative operator on real numbers −1 and 1, respectively.

Definition 14. We define 1n
top to be the result of a dimension-wise linear transformation of

�n
top by ((2 · xi)− 1), therefore, the interval of each dimension is stretched from [0, 1] to [−1, 1].

Definition 15. We define rankntw : Rn → R as rankntw(~x) :=
∑n−1

i=0 (xi · 2(n−1−i) ·
∏i−1

j=0 xj)

or recursively (and equivalently) as rank0tw() := 0 and rankn+1
tw (x0, ~x) := x0 · (2n + rankntw(~x)) .

Definition 16. 1n
pospc, the pospace of twisted n-cube, is defined as mkPospc(1n

top, rank
n
tw).

Remark 17. Intuitively, rankntw is a modification of ranknstd where (
∏i−1

j=0 xj) is multiplied to
xi because each earlier dimension j could reverse the direction of dimension i. We also multiply
2(n−1−i) to xi in order to ensure that the sums of later terms will not outweigh the current
term i.e.

∣∣xi · 2−i ·
∏i−1

j=0 xj

∣∣ >∑n−1
k=i+1

∣∣xk · 2−k ·
∏k−1

j=0 xj

∣∣, which is effective because
∣∣xi

∣∣ 6 1.
Consequently, rankntw only works in 1n

top; If we wants rankntw to work for the entire Rn
top, then we

needs to change the codomain of rankntw to hyperreal numbers [11] and replace 2 with ω.
Example 18. The following diagram visualises Definition 15 by illustrating the anatomy of

the twisted n-cube when 1 6 n 6 3. The columns shows: (1.) the direction of each dimension.
(2.) the graph 1n

graph, (3.) the topological space 1n
top, and (4.) the value of rankntw(p), for each

extreme point p in 1n
pospc, together with arrows in the direction that the value increases.

1st

1st

2nd

1st

2nd3rd

0 1 (−1) (+1) −1 +1

00

01

10

11

(−1,−1)

(−1,+1)

(+1,−1)

(+1,+1)

−1

−3

+1

+3

000

001

010

011

100

101

110

111

(−1,−1,−1)

(−1,−1,+1)

(−1,+1,−1)

(−1,+1,−1)

(+1,−1,−1)

(+1,−1,+1)

(+1,+1,−1)

(+1,+1,+1)

−3

−1

−5

−7

+3

+1

+5

+7

Theorem 19. The proposition canEmbed(1n
graph,1

n
pospc) holds where the underlying function

embntw : {0, 1}n → [−1, 1]n is defined to be the composition between embnstd in Theorem 13 and
the dimension-wise linear transformation in Definition 14.
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Short abstract: In partial type theory, i.e. a higher-order logical system that manipulates both
total and partial functions, a precise formulation of valid rules of β-conversion and even their
versions that substitute a value is possible if explicit substitution and two special evaluation
terms are involved. We derive the latter rules from the primary versions of β-conversion rules
and other primitive rules of the natural deduction for the system. In addition, we formulate
and derive further novel variants of β-conversion rules which are also needed for capturing
inferences with terms that denote partial functions.

The pivotal rules of type theory (TT ), i.e. a higher-order logic with a hierarchy of functions
sorted in interpretations Dτ of types τ , are rules of β-conversion (i.e. β-contraction: `; β-
expansion: a):

[λx̃m.C](D̄m) a` C(D̄m/x̄m)

where X̃m is short for X1X2...Xm; X̄m is short for X1, X2, ..., Xm; but C(D̄m/x̄m) is short for
C(D1/x1)...(Dm/xm) (where C(D/x) abbreviates Sub(pDq, pxq, pCq), see below).

However, within partial TT, i.e. a TT which embraces both total and partial functions,1

the above classical formulation of β-contraction is not valid. For example,

[λx.λy.÷ (x, x)](÷(3, 0)) 6−→β λy.÷ (÷(3, 0),÷(3, 0)),

for [λx.λy.÷ (x, x)](÷(3, 0)) is non-denoting (because D := ÷(3, 0) is non-denoting), but λy.÷
(÷(3, 0),÷(3, 0)) denotes a certain partial function. This is why Tichý [6], Moggi [4], Farmer
[1] and others conditioned the rule by requiring that D entering β-reduction must be denoting.

In Tichý’s [6] convenient two-dimensional (see e.g. Quieroz et al. [5], Tichý [7]) natural
deduction ND for his simple TT (STT) with total and partial (multiargument) functions, his
safe β-contraction rule2 reads

(β−CON) Γ⇒ [λx̃m.C](D̄m):a ` Γ⇒ C(D̄m/x̄m):a

in which λ-terms are ‘signed’ by :a, which is a terse variant of ∼= a, where ∼= is a symbol of
congruence; a is either a variable a or a constant a (Γ is a set of these so-called matches C:a and
⇒ is a relation between sets of sequents and sequents of the form Γ ⇒ C:a). In the left-hand
part of the rule it requires the application written on the left-hand side of `, and thus also its
parts are denoting.

However, Tichý’s proposal is too restrictive and it is one of the goals of the paper to remove
this drawback. For example,

[λx.÷ (x, 0)](3) −→β (÷(3, 0))

1A total / partial function-as-graph maps all / some but not all members of its domain D to some members
of its codomain D′. Note that such functions differ from functions-as-computations.

2In this abstract, we omit β-expansion rule(s). Further, let C etc. be typed by types τ(i) as follows:
C,a/τ ;D1, x1/τ1; ...;Dm, xm/τm, so λx̃m.C/〈τ̄m〉 7→ τ (the type of functions from Dτ1 × ... × Dτm to Dτ ),
where τ̄m is short for τ1, τ2, ..., τm. We assume the STT typing à Tichý [7] (no dependent types yet).
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is not handled by (β-CON). To capture also such examples we propose

(β−CON−) Γ⇒ [λx̃m.C](D̄m): ; Γ⇒ D1:x1; ...; Γ⇒ Dm:xm ` Γ⇒ C(D̄m/x̄m):

where each Di:xi says that Di is denoting an object in the range of xi, and X: represents that
X is non-denoting. (Note that 2D-inference proceeds on sequents, not on mere terms/formulae.)

Two key contributions of the present paper are:

1. A formulation of yet unknown rules of β-conversion (e.g. (β−CON−)) for partial TT.

2. A derivation of the novel rules of β-conversion from primitive rules (e.g. (β-CON)) of
the natural deduction ND for partial TT.

Our system TT∗ is not a ramified TT, cf. e.g. Kamareddine, Laan, Nederpelt [3], though
Tichý’s late TT utilises ramification of his early TT. It is metalogical in its spirit and the
respective ND allows derivation results such as those mentioned in point 2.

Most of our effort pertains to a logically satisfactory development of the following two key
contributions inbuilt in TT∗:

3. An extension of the partial TT by ‘evaluation terms’, namely capture(s) pCq (whose
denotation is C as such) and immersion(s) [[C]]τ (whose denotation is C’s denotation, if
any), and a proposal of ND rules for these terms.3

4. An appropriate extension of the substitution function Sub and a modification of rules using
explicit substitution.

The ‘evaluation terms’ allows us to derive our further novel rules of β-contraction:

(β−CONV ) Γ⇒ [λx̃m.C](D̄m):a ` Γ⇒ Cp(D̄m/x̄m)q:a

(β−CONV−) Γ⇒ [λx̃m.C](D̄m): ` Γ⇒ Cp(D̄m/x̄m)q:

in which V indicates that one substitutes the value of D and p(D̄m/x̄m)q is a derived variant
of (D̄m/x̄m) that substitutes the value of (each) Di, not Di as such (cf. also below).

A motivation for such novel rules provide pieces of inference such as e.g. (let Succ denote
the familiar successor function-as-graph); its formalisation is right below:

Succ(2) is such that the result of substitution of its value

for n in n÷ 0 is (congruent with) (i.e. nothing at all).

The value of the result of substitution of Succ(2)’s value for n in n÷ 0 is .

[λn′.Sub(p(n′)q, pnq, p÷(n, 0)q)](Succ(2)):
(β-CONV−)

[[Sub(p(Succ(2))q, pnq, p÷(n, 0)q)]]τ :

Our approach can therefore capture that

a. one substitutes something in the computation ÷(n, 0) as such (hence p÷(n, 0)q), not to its (non-
existent) result

b. one substitutes the value of the computation Succ(2), not Succ(2) as such (hence one uses not
pSucc(2)q, but p(Succ(2))q, where p(.)q is a function that delivers the constant that stands for
the semantic value of a term and e.g. n′ is free in p(n′)q)

c. it is the value of the result of substitution (hence [[...]]τ ), not the computation as such, which is
compared by ∼= with

d. it is our novel and derived rule (β-CONV−) not any other β-reduction rule, which is appropriate
for obtaining the conclusion from the premiss.

3See e.g. Farmer [2], but we rather follow Tichý [7] and significantly expand his system.
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References

[1] William M. Farmer. “A Partial Functions Version of Church’s Simple Theory of Types”.
In: Journal of Symbolic Logic 55.3 (1990), pp. 1269–1291. doi: https://doi.org/10.
2307/2274487.

[2] William M. Farmer. “Incorporating Quotation and Evaluation into Church’s Type Theory:
Syntax and Semantics”. In: Intelligent Computer Mathematics. CICM 2016. Lecture Notes
in Computer Science, vol 9791. Ed. by B. Miller B. L. de Moura F. Tompa M. Kohlhase
M. Johansson. Springer, 1989, pp. 83–98. doi: https://doi.org/10.1007/978-3-319-
42547-4_7.

[3] Fairouz Kamareddine, Twan Laan, and Rob Nederpelt. A Modern Perspective on Type
Theory. From Its Origins until Today. Springer, 2004. isbn: 978-1402023347.

[4] Eugen Moggi. “The Partial Lambda-Calculus”. Ph.D. thesis. University of Edinburgh,
1988.

[5] Ruy J G B de Queiroz, Anjolina G de Oliveira, and Dov M Gabbay. The Functional
Interpretation of Logical Deduction. World Scientific, 2011. isbn: 978-981-4360-95-1.
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Eliminating Infinitary Induction-induction

Filippo Sestini and Thorsten Altenkirch

School of Computer Science, University of Nottingham, UK

In the study of the metatheory of type theory, one is often interested in finding ways to reduce
a given class of inductive types to another. One reason is that it furthers our understanding of
the class of types being reduced. Another, more practical reason is that from such reductions
we can often extract ways to extend the capabilities of existing proof-assistants based on type
theory beyond their original design. Inductive-inductive types [5] (IITs) are a particularly
evident example, since several well-known and widely-used proof assistants like Coq or Lean
do not directly support them. Finitary 1 induction-induction can be reduced to inductive
families [4,6], which means that these proof-assistants could be made to support it (for example,
via metaprogramming) without the need to change the core foundational theory underlying
them.

Finitary IITs are a rich subclass of induction-induction, that even includes the internal
representation of type theory in type theory [2]. Still, there are interesting examples of IITs
that are not finitary [1]. Unfortunately the reduction method for finitary IITs cannot be applied
out-of-the-box to infinitary types unless we assume function extensionality. This paper presents
work towards a reduction from infinitary IITs to inductive families that does not require funext.
This is important in particular when we want to use the reduction when eliminating function
extensionality as in [1]. We show that a modified version of the reduction method in [6] works
on some infinitary IITs, by deriving signatures, constructors, and eliminators for a concrete
infinitary IIT in a metatheory without induction-induction or funext. We finally discuss our
plans to prove this reduction in the general case for a wide subclass of infinitary IITs.

Metatheory We work in standard MLTT extended with a universe of strict propositions
Prop, like implemented in Agda or Coq [3], and a Prop-valued identity type Idp : {A :
Type} → A→ A→ Prop equipped with a strong transport combinator transp : ∀{Aa0 a1}(C :
A → Type) → Idp a0 a1 → C a0 → C a1. Note that this combinator allows to transport
over a strict-propositional equation along proof-relevant types, so it’s a non-trivial extension
to the metatheory that doesn’t directly follow from Idp’s inductive definition. Nevertheless,
unlike function extensionality this principle has an obvious computational interpretation in an
intensional setting, even though its metatheory hasn’t yet been fully established.

Reduction method We now illustrate the main ideas of the reduction, which is based on the
method described in [6] for finitary IITs, but with crucial differences that will be made clear
throughout. We consider as a running example the type of contexts Con : Type and types
indexed by contexts Ty : Con→ Type. Note that the constructor for Π-types has been altered
to be infinitary.

• : Con ι : (Γ : Con)→ Ty Γ

– , – : (Γ : Con)→ Ty Γ→ Con π : {Γ : Con}(A : Ty Γ)→ (N→ Ty (Γ, A))→ Ty Γ

elimCon : (Γ : Con)→ ConD Γ elimTy : ∀{Γ}(A : Ty Γ)→ TyD Γ A (elimCon Γ)

1We say that an IIT is finitary, if it defines finitely branching trees, i.e. there are no Π-types that targets
any of the types currently defined in its codomain. Otherwise it is infinitary.
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where ConD : Con→ Type,TyD : ∀{Γ} → ConD Γ→ TyΓ→ Type are components of any
displayed algebra of Con,Ty. The objective is to encode this IIT and its elimination principle
in our metatheory, which doesn’t support induction-induction. The idea is to define a pair
of types Con0,Ty0 : Type, obtained from Con,Ty by “erasing” all indices, and well-typing
predicates Con1 : Con0 → Prop,Ty1 : Con0 → Ty0 → Prop that restore the information lost
in the erasure. Unlike in [6], we define the predicates as strict propositions. This is to avoid
proving propositionality by induction, which would require function extensionality in general.
The constructors of erased types and predicates are derived just like in the finitary case. We
write the cases for π∞ below:

π∞
0 : Con0 → Ty0 → (N→ Ty0)→ Ty0

π∞
1 : ∀{Γ0A0B0} → Con1 Γ0 → Ty1 Γ0A0 → ((n : N)→ Ty1 (Γ0, A0) (B0 n))→ Ty1 Γ0 (π∞

0 Γ0A0B0)

We can recover the original IIT as Con :≡ Σ (Γ0 : Con0) (Con1 Γ0) and Ty Γ :≡ Σ (A0 :
Ty0) (Ty1 (π1 Γ) A0). Recovering the constructors is a straightforward pairing.

Since we can’t rely on induction-induction (or rather recursion-recursion), we won’t define
the eliminators directly, but instead inductively define their graphs as relations. We then show
by induction on the erased types Con0,Ty0 that they are total.

data R-Con : (Γ : Con)→ ConD Γ→ Type

data R-Ty : {Γ : Con}(A : Ty Γ)(γ : ConD Γ)→ TyD Γ A γ → Type

existsCon : ∀Γ→ Σ(ΓD : ConD Γ) (R-ConΓ ΓD)

existsTy : ∀ {Γ ΓD} (A : TyΓ)→ R-ConΓ ΓD → Σ(AD : TyD ΓD A)(R-TyAΓD AD)

Note that unlike in [6], we prove totality but not right-uniqueness, as the latter requires
function extensionality. The way existsTy is defined is crucial in avoiding the need for right-
uniqueness. In fact, at first glance we could have equivalently defined it to return ΓD : ConD Γ
and R-ConΓ ΓD as an output along AD, rather than requiring it as an input. However, the first
choice would have forced us to prove right-uniqueness.

The strong transport rule is essential to define existsTy. In many cases, we would need
to pattern match on the well-typing component of A to expose equational constraints on Γ.
However, in our case this has become impossible, since Ty1 is a strict proposition. We solve
this by expressing these equations in terms of Idp, then rely on strong transport to use them.

The eliminators can finally be defined immediately from first projections:
elimCon Γ :≡ π1(existsConΓ), elimTy {Γ}A :≡ π1(existsTyA (π2(existsConΓ))).

Towards a general reduction method We have seen this reduction method on an example.
We are currently working on proving that it works in general, on a subclass of all infinitary
IITs. This subclass has been characterized considering technical limitations of the reduction
method, as well as simplicity.

First of all, we restricted our scope to non-indexed infinitary IITs with two fixed sorts of
the form A : Type and B : A → Type. The number of sorts doesn’t seem to be particularly
important, as we should be able to equivalently express any IIT using only two sorts (although
this fact seems to be folklore.) In the future we certainly want to extend the method to indexed
IITs once it is proved to work for non-indexed ones.

One more serious limitation that we are seemingly forced to impose is linearity of the
variables that appear in the conclusion type of constructors for B. For example, if ctrA : A→
A → A is a constructor for A, we would allow ctrB : (a0 : A)(a1 : A) → B (ctrA a0 a1) but
not ctr′B : (a : A)→ B (ctrA a a). This is because the presence of non-linear variables forces us
to prove right-uniqueness of the relations. However, we believe that this can be addressed by
expressing non-linearity using a linear equality relation inductively defined alongside A and B.

2



Eliminating Infinitary Induction-induction Filippo Sestini and Thorsten Altenkirch

References

[1] Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, Christian Sattler, and Filippo Sestini. Con-
structing a universe for the setoid model. In Stefan Kiefer and Christine Tasson, editors, Foundations
of Software Science and Computation Structures, pages 1–21, Cham, 2021. Springer International
Publishing.

[2] Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive types.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 16, page 1829, New York, NY, USA, 2016. Association for Computing
Machinery. URL: https://doi.org/10.1145/2837614.2837638, doi:10.1145/2837614.2837638.
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Modelling Smart Contracts of Bitcoin in Agda
Anton Setzer1∗and Bogdan Gabriel Lazar1†
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Abstract
This work is based on the first author’s model of the transaction structure of Bitcoin

using inductive-recursive data types in the theorem prover Agda. We extend this model
by adding smart contracts written in the byte code language Script of Bitcoin. The goal is
to use it for verifying the correctness of smart contracts. The use of non-local conditional
instructions is solved without the use of jump addresses.

Cryptocurrencies are currently widely discussed. Many cryptocurrencies support smart
contracts, a feature with big potential. Smart contracts are programs stored on the blockchain
which are automatically executed when conditions are met, resulting in changes of data storage
and monetary transactions. They are increasingly used for non-monetary applications. There
is no legal framework at present to prevent the malicious execution of a smart contract. This
contrasts with ordinary contracts where a legal framework exists, which void certain malicious
uses of clauses written in a contract. Due to the absence of legal protection, smart contracts
require a much higher level of correctness. Together with the fact that smart contracts are
small and therefore easy to manage, and because mistakes might have substantial monetary
consequences, smart contracts are a prime target for machine checked correctness proofs.

Bitcoin’s language for smart contracts is the byte code language Script.1 It is a Forth-like
stack machine (Sect. 6 of [Ant17]). The instructions manipulate the stack, the only memory
available. They may as well result in abortion of the program. In order to check signatures,
Script can refer to a message extracted from the current transaction. Smart contracts might
be executed after a certain amount of time and can therefore refer to the current time. Script
does not have jumps; therefore, programs will always terminate. It has control flow statements,
consisting of operations OP_IF/OP_NOTIF, OP_ELSE, OP_ENDIF. Depending on the top
element of the stack after an OP_(NOT)IF the if-case or else-case (if it exists) is executed.
This avoids miscalculation with forward jumps, a widespread problem in assembly languages.2

In [Set18, Set19] (see as well the PhD thesis [dS20]) the first author introduced a model
of the transaction dag of Bitcoin, based on an inductive-recursive data structure. The trans-
actions were defined inductively while recursively computing the set of unspent transaction
outputs. Transactions consist of a list of inputs and a list of outputs. An input consists of a
previous unspent transaction output (utxo), a public key, and a signature. An output consists
of an amount, and an address. An input is correct if the public key hashes to the address.
Furthermore, the signature needs to sign the relevant part of the message using the private key
corresponding to the public key. In addition, there are global conditions for transactions such
as that the sum of outputs needs to be less than the sum of inputs.
∗a.g.setzer@swansea.ac.uk, http://www.cs.swan.ac.uk/~csetzer/
†lazarbogdan90@yahoo.com
1The cryptocurrency Ethereum has a high-level language Solidity for smart contracts, which on the

blockchain is first compiled into the byte code of the Ethereum Virtual machine EVM. The EVM shares great
similarities with Script. An attacker can directly target the EVM, therefore verification of smart contracts in
Ethereum needs to address the byte code level. In this talk we will focus on Script, but techniques used there
can be adapted to verify programs of the EVM.

2In contrast the EVM has arbitrary jumps, has reference to external memory, and replaces the conditionals
of Script by conditional jumps.

http://www.cs.swan.ac.uk/%7Ecsetzer/
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In order to extend this model to include Script, the public key and signature in the input
are replaced by an input script, called scriptSig. The address of the output is replaced by an
output script, called scriptPubKey. To verify an input, we execute, starting with the empty
stack, first the scriptSig followed by the scriptPubKey. The input is correct, if the execution is
not aborted, at the end the stack is nonempty, and the top element of the stack is not false. To
prevent an open OP_IF operation from the scriptSig to affect scriptPubKey, we will add our
own separating instruction in between to make sure that the two parts are executed separately3.

In order to carry out this verification we introduce an interpreter for Script in Agda. There
are several groups of instructions. The first group of instructions are stack manipulating instruc-
tions. They assume a certain number of elements on the stack and replace them by different
elements. For instance, OP_ADD assumes two elements on the stack, and replaces them by
their sum. If there are not enough elements on the stack or certain conditions are not fulfilled
the instructions abort (e.g., in case of OP_VERIFY if the top element is not true). Considering
a possible failure all these instructions translate into functions of type

Stack → Maybe Stack
The second group of instructions are those referring to the message representing the part of

the instruction to be signed, or the time. They translate into functions
Time → Msg → Stack → Maybe Stack

For dealing with conditionals, we need a second stack which gives information about the
nesting of conditionals, and whether the current if- or else-case is to be executed. The elements
are ifCase and elseCase, corresponding to the situation where we are in the if- or else-case of
a conditional to be executed; ifSkip and elseSkip, where we are in an if- or else-case not to be
executed; and ifIgnore, corresponding to the situation where we have a complete if-then-else
which occurs inside an if- or else-case which is to be skipped. Note that we didn’t introduce
any jump instructions which would make verification more difficult. The operations correspond
to functions of type

(Stack × IfStack) → Maybe (Stack × IfStack)
After lifting these different functions (using a higher order function these liftings can be

done easily in a generic way), we obtain operations of type
Time → Msg → (Stack × IfStack) → Maybe (Stack × IfStack)

This lifting needs to take care of the fact that in case of ifSkip, elseSkip, ifIgnore on top of
the IfStack, all non-conditional instructions need to be ignored.

As it stands the model is currently a prototype, since only a part of the language for smart
contracts has been added. Once it is complete it needs to be thoroughly tested relative to Bit-
coin Core. Ideally one would rewrite Bitcoin core in Agda, based e.g., on Haskoin Core [hac21].
The next step would be to use this approach to verify smart contracts, where the challenge is
to specify what it means for a smart contract to be correct, which involves temporal features.
Solving this challenge would allow to give more abstract specifications of smart contracts ex-
pressing directly its correctness rather than just looking for possible attacks or showing that a
contract is bisimilar to an abstract smart contract assumed to be contract – these are the tech-
niques commonly used for specifying the correctness of smart contracts. This would also allow
to verify more generic forms of smart contracts, something which we don’t assume is possible
using the normally used automated theorem techniques. Another challenge is to expand the
use of smart contracts to a language like the EVM or to directly add object-based programming
to the language, which could make use of our work on integrating object-based programming
into Agda. [AAS17, Set07].

3After suspecting a problem when developing the specification, we learned that there was indeed originally
a problem in Bitcoin which was fixed in 2010, see Sect. 6 of [Ant17].
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Background. Since the works [10, 15], several typed λ-calculus systems were combined with
user-defined rewrite rules, and the termination (i.e. strong normalisation) problem of the com-
bined systems was discussed: for instance, simply typed λ-calculus [9, 11, 13, 7], polymorphic
λ-calculus [10, 15, 12], λΠ-calculus [8], the Calculus of Constructions [18, 5, 6], λ-cube [2], pure
type systems [3, 4]. Rewrite rules can make these systems more expressive and efficient, and a
termination criterion for combined systems provides a sufficient condition for the termination
of the rewrite relation (i.e. the reduction relation) in a given combined system. Of course,
there are some non-terminating and interesting combined systems, but here we are interested
in terminating systems only.

The performance of a combined system depends on not only its type discipline but also the
range of rewrite rules whose termination is guaranteed. For instance, while Jouannaud-Okada’s
work [12] handles polymorphic λ-calculus and Blanqui-Jouannaud-Okada’s work [9] does not,
the termination criterion in the latter shows the termination of the recursion principle for the
Brouwer ordinal type, which cannot be shown by the criterion in the former. The Brouwer
ordinal type is a type of well founded trees and a typical example of strictly positive inductive
types. Later, Blanqui ([7]) extended the criterion in [9] so that the termination of some rewrite
rules for non-strictly positive inductive types is guaranteed. Though the setting of [9, 7] is
simply typed λ-calculus, their termination criteria are powerful enough.

Aim. We reinforce the termination criterion in [7] further by making it possible to verify
the termination of some rewrite rules on types which are called non-positive types. When we
denote arrow types by T ⇒ U , a non-positive type means a sort (i.e. a basic type) B with a
constructor c : T1 ⇒ · · · ⇒ Tn ⇒ B such that B occurs in some Ti negatively. As shown in
[14, 16, 5], there are some non-positive types such that recursion principles for them induce
non-termination. This indicates the difficulty in finding a terminating example of recursion
principles for non-positive types. However, if one considers rewrite rules which are different
from recursion principles, one can think of some rewrite rules on non-positive types whose
termination is guaranteed. It is desirable to extend the criterion in [7] in this respect.

Approach. The approach of [7] to a termination criterion uses computability predicates with
size annotations. Roughly speaking, its termination criterion is formulated in the following
way: first, a computability predicate is assigned to each type T by extending an interpretation
I of sorts. For any sort B, I(B) is a computability predicate annotated by ordinals as sizes:
I(B) is equal to sup{SBa | a < h} for some limit ordinal h and some ordinal-indexed family
(SBa )a<h of computability predicates, where SBa ⊆ SBb holds for any a, b with a ≤ b. This kind of
ordinal-indexed family of computability predicates is called a stratification. The interpretation
I is extended to all types by defining I∗(B) := I(B) and

I∗(T ⇒ U) := I∗(T )⇒∗ I∗(U) := {t | ts ∈ I∗(U) for any s ∈ I∗(T )}.
∗Supported by JSPS (Japan Society for the Promotion of Science) Overseas Research Fellowship. We thank

Frédéric Blanqui for valuable remarks and discussions on size-based termination.
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Finally, it is shown that if a given rewrite system satisfies the termination criterion, then any
term t of type T belongs to I∗(T ); this implies that t is terminating.

In the approach above, an ordinal is assigned to each term in I(B) as its size. For instance,
consider the Brouwer ordinal type O again: O has the three constructors

zero : O succ : O⇒ O lim : (N⇒ O)⇒ O

where N is the natural number type. Let I(O) = sup{SOa | a < h} be the case, then a typical
case is the following: when a term t is of the normal form with t ∈ I(N)⇒∗ SOa , then we have
lim t ∈ SOa+1. This is in particular useful for handling recursive calls of functions on inductive
types, since we can consider that the recursive call of f in the definition of a function f(lim t) is
“smaller than” f(lim t) thanks to size annotation for lim t.

The main obstacle in extending this method of [7] to non-positive types is as follows: let
[B : X , I]∗T be the interpretation of T obtained from I1 such that for any sort C, I1(C) = X
holds if C = B, otherwise I1(C) = I(C). Then, a crucial fact in the method of [7] is that if B
occurs in T only positively, then [B : X1, I]∗T ⊆ [B : X2, I]∗T holds whenever X1 ⊆ X2 holds.
This monotonicity property enables one to define a stratification S0 ⊆ S1 ⊆ · · · ⊆ Sa ⊆ · · · in
the bottom-up way, but this property does not hold if B occurs in T negatively.

We remove this obstacle by utilising the inflationary fixed-point construction ([17]), which
does not assume the monotonicity of operators for fixed points as explained in [1]. This con-
struction provides the following obvious monotonicity to any ordinal-indexed family (Sc)c<h of
computability predicates: if a ≤ b holds then

⋃
c≤a([B : Sc, I]∗T ) ⊆

⋃
c≤b([B : Sc, I]∗T ) holds,

where B may occur in T negatively. A trade-off is that, for non-positive types, we need to
reformulate a size-based termination argument only with pre-fixed points.

Our construction of computability predicates for non-positive types enables us to extend
the accessibility property. Roughly speaking, the definition of the accessibility property in [7]
says that a term t is accessible in a term s if there are terms c1s11 · · · s1k1

, . . . , cns
n
1 · · · snkn

such
that the type of each cms

m
1 · · · smkm

is a sort (i.e. each constructor cm is fully applied), and

1. s = c1s
1
1 · · · s1k1

,

2. t = sni holds for some i, and the type Bn of cns
n
1 · · · snkn

occurs in the type of t only
positively (i.e. t is a positive argument of cn),

3. for any m with 2 ≤ m ≤ n, cmsm1 · · · smkm
= sm−1

i holds for some i.

We extend the clause 2. of this property so that Bn may occur in the type of t negatively (i.e.
Bn can be a non-positive type). Then, Accessibility condition of our termination criterion is
as follows: if a variable x occurs in the right-hand side r of a rewrite rule fl1 · · · ln → r with a
function symbol f, then either x = li holds or x is accessible in li for some i.

Our termination criterion guarantees the termination of the following rewrite system R,
though it is a toy example: let B be a sort with the constructors c1 : B, c2 : (B ⇒ B) ⇒ B
and c3 : (B ⇒ B) ⇒ B. Then, R consists of the rules (1) fc1 → c1, (2) f(c2a) → c3a and (3)
f(c3a)→ c2a with f : B⇒ B. Note that R does not satisfy Accessibility condition in the sense
of [7], because the right-hand sides of the second and third rules include a variable a whose
type has a negative occurrence of B.

In sum, we extend the termination criterion in [7] to non-positive types by size-based termi-
nation with the inflationary fixed-point construction. A future research direction is to formulate
our termination criterion for some dependent type system, and then find an interesting example
of rewrite systems on non-positive types whose termination is guaranteed by our criterion.

2



Size-Based Termination for Non-Positive Types Takahashi

References

[1] Andreas Abel. Type-based termination, inflationary fixed-points, and mixed inductive-coinductive
types. In Proceedings 8th Workshop on Fixed Points in Computer Science, FICS 2012, Tallinn,
Estonia, 24th March 2012, pages 1–11, 2012.

[2] Franco Barbanera, Maribel Fernández, and Herman Geuvers. Modularity of strong normalization
in the algebraic-lambda-cube. J. Funct. Program., 7(6):613–660, 1997.

[3] Gilles Barthe and Herman Geuvers. Modular properties of algebraic type systems. In Higher-
Order Algebra, Logic, and Term Rewriting, Second International Workshop, HOA ’95, Paderborn,
Germany, September 21-22, 1995, Selected Papers, pages 37–56, 1995.

[4] Gilles Barthe and Femke van Raamsdonk. Termination of algebraic type systems: The syntactic
approach. In Algebraic and Logic Programming, 6th International Joint Conference, ALP ’97 -
HOA ’97, Southampton, UK, Spetember 3-5, 1997, Proceedings, pages 174–193, 1997.

[5] Frédéric Blanqui. Definitions by rewriting in the calculus of constructions. Mathematical Structures
in Computer Science, 15(1):37–92, 2005.

[6] Frédéric Blanqui. Inductive types in the calculus of algebraic constructions. Fundamenta Infor-
maticae, 65(1-2):61–86, 2005.

[7] Frédéric Blanqui. Size-based termination of higher-order rewriting. J. Funct. Program., 28:e11,
2018.

[8] Frédéric Blanqui, Guillaume Genestier, and Olivier Hermant. Dependency pairs termination in
dependent type theory modulo rewriting. In 4th International Conference on Formal Structures for
Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, pages 9:1–9:21,
2019.

[9] Frédéric Blanqui, Jean-Pierre Jouannaud, and Mitsuhiro Okada. Inductive-data-type systems.
Theoretical Computer Science, 272(1):41–68, 2002.

[10] Val Breazu-Tannen and Jean Gallier. Polymorphic rewriting conserves algebraic strong normaliza-
tion and confluence. In Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simonetta Ronchi
Della Rocca, editors, ICALP 1989: Automata, Languages and Programming, pages 137–150,
Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.

[11] Carsten Fuhs and Cynthia Kop. Polynomial interpretations for higher-order rewriting. In 23rd
International Conference on Rewriting Techniques and Applications (RTA’12) , RTA 2012, May
28 - June 2, 2012, Nagoya, Japan, pages 176–192, 2012.

[12] Jean-Pierre Jouannaud and Mitsuhiro Okada. Abstract data type systems. Theoretical Computer
Science, 173(2):349–391, 1997.

[13] Cynthia Kop and Femke van Raamsdonk. Dynamic dependency pairs for algebraic functional
systems. Log. Methods Comput. Sci., 8(2), 2012.

[14] Nax Paul Mendler. Inductive types and type constraints in the second-order lambda calculus.
Annals of Pure and Applied Logic, 51(1):159–172, 1991.

[15] Mitsuhiro Okada. Strong normalizability for the combined system of the typed lambda calculus
and an arbitrary convergent term rewrite system. In Proceedings of the ACM-SIGSAM 1989
International Symposium on Symbolic and Algebraic Computation, ISSAC ’89, Portland, Oregon,
USA, July 17-19, 1989, pages 357–363, 1989.

[16] Erik Palmgren. On universes in type theory. In Giovanni Sambin and Jan M. Smith, editors,
Twenty Five Years of Constructive Type Theory, Oxford Logic Guides, pages 191–204. Oxford
University Press, 1998.

[17] Christoph Sprenger and Mads Dam. On the structure of inductive reasoning: Circular and tree-
shaped proofs in the µ-calculus. In A. D. Gordon, editor, Foundations of Software Science and
Computation Structures. FoSSaCS 2003, pages 425–440, 2003.

[18] Daria Walukiewicz-Chrząszcz. Termination of rewriting in the calculus of constructions. J. Funct.
Program., 13(2):339–414, 2003.

3



Semantic Analysis of Normalization by Evaluation for

Fitch-Style Modal Lambda Calculi

Nachiappan Valliappan1, Fabian Ruch, and Carlos Tomé Cortiñas1
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Fitch-style modal lambda calculi (Borghuis 1994; Clouston 2018) provide a solution to
programming necessity modalities (denoted by a �) in a typed lambda calculus by extending
the typing context with a delimiting operator (denoted by a µ). In this work, we perform a
semantic analysis of normalization by evaluation (NbE) (Berger and Schwichtenberg 1991) for
Fitch-style modal lambda calculi by beginning with the calculus λIK—a system for the most
basic modal logic IK (for “intuitionistic” and “Kripke”)—as our object of study. We construct
an NbE model for λIK, and show that it is an instance of the possible-worlds semantics for
IK. The presented NbE procedure has been formalized (Valliappan 2020–2021) in the proof
assistant Agda (Abel et al. 2005–2021).

The Fitch-style modal lambda calculus under consideration. IK extends intuitionistic
propositional logic with the necessity modality �, the necessitation rule (if · ` A then Γ ` �A)
and the K axiom (�(A → B) → �A → �B). Correspondingly, λIK extends the simply-typed
lambda calculus (STLC) with the typing rules in Figure 1. The rules for λ-abstraction and
function application are formulated in the usual way—but note the modified variable rule!

Ty A ::= ... | �A Ctx Γ ::= · | Γ, x : A | Γ,µ

Γ, x : A,Γ′ ` x : A
µ /∈ Γ′ Γ,µ ` t : A

Γ ` box t : �A

Γ ` t : �A

Γ,µ,Γ′ ` unbox t : A
µ /∈ Γ′

Figure 1: Typing rules for λIK (omitting λ-abstraction and application)

The NbE model for λIK. NbE is the process of evaluating, or interpreting, terms of a
calculus in a suitable model and then reifying, or extracting, normal forms from values in
that model. NbE for STLC can be performed by interpreting types and contexts as covariant
presheaves over the category W of contexts Γ, ∆ and order-preserving embeddings (OPEs)
e : Γ ≤ ∆, and terms as natural transformations (Altenkirch, Hofmann, and Streicher 1995).

Given that the category of presheaves Ŵ is a cartesian closed category (CCC), the evaluation
function L M : Γ ` A → JΓK .−→ JAK is given by the standard interpretation of STLC in a CCC.
The reification function, on the other hand, is given by a family of natural transformations
↓A : JAK .−→ Nf A, where the presheaf Nf A denotes normal forms of type A.

To achieve NbE for λIK, we define a new categoryWµ akin toW by requiring that morphisms
additionally preserve locks and refer to the resulting notion of context embedding as OLPE.
Note that whenever there is an OLPE e : Γ ≤ ∆ then ∆ has the exact same number of
locks as Γ. Further, we extend the interpretation of types and contexts to the type former �
and the context operator µ. Clouston (2018) shows that λIK can be soundly interpreted in
a CCC equipped with an adjunction Lock a Box of endofunctors by interpreting � by the
right adjoint Box and µ by the left adjoint Lock. Following this soundness result, we can use
the CCC Ŵµ as our new NbE model, after equipping it with an adjunction. By virtue of
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our definition of this adjunction (given in Figure 2), the evaluation of box and unbox is given
by the generic interpreter of Clouston (2018), and we can construct natural transformations

↓�A : Box JAK .−→ Nf �A, for every type A—thus retaining reification.
We summarize the data part of the NbE model for the modal fragment of λIK in Figure 2

as definitions in a constructive type-theoretic metalanguage. A presheaf A over Wµ consists
of a family of sets AΓ indexed by contexts Γ, and a family of functions wke : AΓ → AΓ′

indexed by OLPEs e : Γ ≤ Γ′. The reflection function ↑A defines a natural transformation
from the presheaf of neutral terms NeA, and can be used to construct an element idΓ

s : JΓKΓ.
Normalization for a term Γ ` t : A is then given by ↓AΓ (LtM(idΓ

s )).

x : A
Γ,µ

box x : BoxΓA
x : AΓ

lock x : Lock
Γ,µ,Γ′ A

µ /∈ Γ′

J K : Ty→ Ŵµ
J�AKΓ = BoxΓ JAK

J K : Ctx→ Ŵµ
J∆,µKΓ = LockΓ J∆K

L M : Γ ` A→ JΓK∆ → JAK∆

Lbox tM γ = box (LtM γ)

Lunbox tM 〈γ, 〉 = Lunbox tM γ
Lunbox tM (lock γ) = wkx

where box x = LtM γ

↓AΓ : JAKΓ → NfΓA

↓�A
Γ (box x) = box (↓A

Γ,µ x)

↑AΓ : NeΓA→ JAKΓ

↑�A
Γ n = box (↑A

Γ,µ(unboxn))

Figure 2: NbE for the modal fragment of λIK

Connection with possible-worlds semantics. Analogously to how the NbE model for
STLC can be seen as an instance of the Kripke semantics of IPL, the NbE model we present
here can be seen as an instance of the possible-worlds semantics of IK. Hence, the observation
that the NbE model construction for STLC corresponds to the completeness proof for Kripke
semantics (C. Coquand 1993; T. Coquand and Dybjer 1997) carries over to the setting here.

The possible-worlds semantics for IK is parameterized by a frame, i.e. a type W together
with two binary relations ≤ and R on W which are required to satisfy certain conditions (Božić
and Došen 1984; Došen 1985; Simpson 1994): 1. ≤ is reflexive, 2. ≤ is transitive, 3. if w ≤ w′

and w′ R v′ then there exists v : W such that w R v and v ≤ v′, and 4. if w R v and v ≤ v′

then there exists w′ : W such that w ≤ w′ and w′ R v′. An element w : W can be thought of
as a representation of the “knowledge state” about some “possible world” at a certain point in
time; w ≤ w′ as representing an increase in knowledge; and w R v as specifying accessibility of
worlds from one another.

Given a frame (W,≤, R), the possible-worlds semantics interprets a formula A at w : W
as the presheaf A(w) over (W,≤). The interpretation of �A at w is the type of functions
p assigning an element p(v) : A(v) to every v : W such that w R v. Note that, by virtue
of the frame conditions, the interpretation of � extends to a functor Box on the category of
presheaves and that Box has a left adjoint Lock. Hence, the possible-worlds semantics fits into
the semantic framework of Clouston (2018). The left adjoint Lock can be described directly as
mapping A and w : W to the type of pairs 〈v, a〉 where v : W such that v R w and a : A(v)

Now, we observe that the NbE model for λIK can be seen as the possible-worlds model where
we pick Fitch-style contexts for W , OLPEs for ≤, extensions by a µ for R, i.e. Γ R ∆ if and
only if there exists Γ′ such that µ 6∈ Γ′ and ∆ = Γ,µ,Γ′ (cf. Figures 1 and 2), and normal forms
as the interpretation of base types. Note that the required frame conditions are satisfied.
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The powerset functor, delivering the set of subsets of a given set, plays a fundamental role
in the behavioral analysis of nondeterministic systems [9], which include process calculi such
as Milner’s calculus of communicating systems and π-calculus. A nondeterministic system is
determined by a function c : S → PS, called a coalgebra, from a set of states S to the set PS of
subsets of S. The function c associates to each state x : S a set of new states c x reachable from
x, so it represents the transition relation of an unlabelled transition system. Adding labels to
transitions is easy, just consider coalgebras of the form c : S → P (A×S) or c : S → (A→ PS)
instead, where A is a set of labels. In many applications, the set of reachable states is known to
be finite, so the powerset functor P can be replaced by the finite powerset functor Pfin delivering
only the set of finite subsets.

The behavior of a finitely nondeterministic system starting from a given initial state is fully
captured by the final coalgebra of Pfin. Elements of the final coalgebra are execution traces
obtained by iteratively running the coalgebra function modelling the system on the initial state.
The resulting traces are possibly infinite trees with finite unordered branching. Several formal
constructions of the final coalgebra of Pfin and other finitary set functors exist in the literature,
developed using various different techniques [5, 1, 12, 2]. Adámek et al. collect and compare all
these characterizations in their recent book draft [3, Chapter 4]. All these constructions take
place in set theory, and reasoning is based on classical logic.

In this work we present various definitions of the final coalgebra of the finite powerset
functor in constructive type theory, which have all been formalized in the Cubical Agda proof
assistant [11]. Cubical Agda is an implementation of cubical type theory [6], which in turns
is a particular presentation of homotopy type theory with support for univalence and higher
inductive types (HITs). The choice of Cubical Agda as our foundational setting, over other
proof assistants based on Martin-Löf type theory or the calculus of constructions such as plain
Agda, Coq or Lean, lies in the fact that both univalence and HITs play an important role for
both encoding and reasoning with the finite powerset datatype in homotopy type theory [7]. In
our development we also take advantage of Cubical Agda’s support for coinductive types.

The formalization is available at https://github.com/niccoloveltri/final-pfin. More
details can be found in an upcoming paper [10].

The final coalgebra using setoids. Given a setoid (A,R), its setoid of finite subsets is
defined as Pfins (A,R) =df (ListA, List R), where List is a lifting of List to relations. Given a
type family R : A→ A→ Type, the type family List R : ListA→ ListA→ Type is defined as

List Rs t =df ((x : A)→ x ∈ s→ ∃y : A. y ∈ t×Rxy)
×
((y : A)→ y ∈ t→ ∃x : A. x ∈ s×Ry x)

So two lists are related by List R when each element of a list is R-related to at least one
element of the other list. Notice that List is not the standard relation lifting on lists, it is
often called a relator, and plays an important role in the study of applicative bisimilarity for

https://github.com/niccoloveltri/final-pfin
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functional programming languages with nondeterministic choice [8]. The final coalgebra of
Pfins in the category of setoids is the setoid composed of the final coalgebra of the list functor,
whose elements are non-wellfounded finitely-branching trees, and the coinductive relation TreeR
relating two trees if, for each subtree of one tree, there merely exists a TreeR-related subtree of
the other tree. In Agda the definitions look as follows:

record Tree : Type where
coinductive
field

subtreesL : List Tree

record TreeR (t u : Tree) : Type where
coinductive
field

subtreesR : List TreeR (subtreesL t) (subtreesL u)

(1)

The final coalgebra using quotient inductive types. Given a type A, the type of its finite
subsets PfinA can be defined as the set quotient of ListA by the relation List (=). Equivalently,
it can also be defined as a quotient inductive type, as the free join semilattice on A [7]. In
Cubical Agda, the final coalgebra of Pfin can be given as the coinductive type on the left:

record νPfin : Type where
coinductive
field

subtreesP : Pfin νPfin

record νPfinB (t u : νPfin) : Type where
coinductive
field

subtreesBP : Pfin νPfinB (subtreesP t) (subtreesP u)

The coinductive relation on the right is the notion of bisimilarity for νPfin, which crucially in
Cubical Agda can be proved equivalent to path equality. The relation lifting Pfin is defined
analogously to List in (1), where now s, t are finite subsets and the list membership relation ∈
is replaced by the appropriate membership relation for finite subsets.

Alternatively, one can think of obtaining the final Pfin-coalgebra from the final Pfins-
coalgebra in setoids, i.e. as the set quotient of the type Tree of coinductive trees by the
equivalence relation TreeR. The resulting type Tree/TreeR is indeed a fixpoint of Pfin, i.e.
Pfin (Tree/TreeR) ' Tree/TreeR, but proving the finality of the coalgebra underlying this equiv-
alence seems to require the assumption of the full axiom of choice.

Analysis of Worrell’s classical set theoretic construction. It is well known that the
chain of iterated applications of Pfin on the singleton set does not stabilize after ω steps [1].
This is in antithesis with the case of polynomial functors, whose final coalgebras (a.k.a. M-
types in type theory) always arise as ω-limits, a fact that can also be proved in homotopy type
theory [4]. James Worrell showed in classical set theory that the final Pfin-coalgebra can be
obtained by iterating applications of Pfin for extra ω steps, i.e. as the (ω + ω)-limit of the
chain [12]. Elements of the ω-limit are represented by non-wellfounded trees with unordered
but possibly infinite branching, while the (ω+ω)-limit corresponds to the subset of these trees
with finite branching at all levels.

In our constructive setting, Worrell’s construction of the (ω+ω)-limit is indeed the final Pfin-
coalgebra, modulo the assumption of classical principles such as the axiom of countable choice
and the lesser limited principle of omniscience (LLPO). Notably, Worrell’s iterated construction
is inherently classical: the ω-limit is equipped with a canonical Pfin-algebra structure, but the
injectivity of the latter is equivalent to LLPO. Concretely this means that it is impossible to
prove that the (ω+ω)-limit is a subset of the ω-limit, as in Worrell’s construction, without the
assumption of LLPO.

Acknowledgments This work was supported by the Estonian Research Council grant
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Introduction

Interactive Theorem Provers allow the user to incrementally construct formal proofs through an interaction
loop. One progresses through a sequence of states corresponding to incomplete proofs. Each of these states
is itself described by a finite set of goals and the proof is completed once there are no goals left. From the
user’s point of view, a goal appears as a sequent, in the sense coined by Gentzen. In the case of intuitionistic
logic that is:

• One particular proposition A which is to be proved, we designate it as the goal’s conclusion,

• a set of propositions Γ corresponding to hypotheses.

The user performs actions on one such goal at a time, and the actions transform the goal, or rather replace
the goal by a new set of goals. When this set is empty, the goal is said to be solved.

In the dominant paradigm, these commands are provided by the user in text form; since Robin Milner
and LCF [3] they are called tactics.

The present work is a form of continuation of the Proof-by-Pointing (PbP) effort, initiated in the 1990ties
by Gilles Kahn, Yves Bertot, Laurent Théry and their group [1]. Both works share a main idea which is to
replace the textual tactic commands by physical actions performed by the user on a graphical user interface.
In both cases, the items the user performs actions on are the current goal’s conclusion and hypotheses. What
is new in our work is that we allow not only to click on subterms of these items, but also to drag-and-drop
(DnD) one subterm onto another. This enriches the language of actions in, we argue, an intuitive way. We
should point out that what is proposed here is not meant to replace but to complement the proof-by-pointing
features. We thus envision a general proof-by-action paradigm, which includes both PbP and DnD features.

We have implemented a small web-based prototype to demonstrate and explore this approach. We think
there is a possibility this will help in making proof systems more accessible and user-friendly, among other
fields in education.

Setting

The proof-by-action approach ought to be applied to various formalisms; the current prototype implements
first-order intuitionistic logic. One advantage of this approach is that it allows a very lean visual layout of
the proof state; a goal thus appears as a set of items, whose nature is defined by their respective colors:

• A red item which is the proposition to be proved, that is the conclusion,

• blue items, which are the local hypotheses.

Each goal is displayed on a tab. In these tabs, each item thus appears as a red or blue rectangle, bear-
ing a logical statement of the item. By default, the red conclusion statement is on the right and the blue

1



Figure 1: A partial screenshot showing a goal in the Actema prototype. The conclusion is red on the right,
the two hypotheses blue on the left. The gray dotted lines and arrows have been added to show two possible
drag-and-drop actions.

hypotheses are on the left; see figure 1 for a possible state.

The items are what the user can act upon: either by clicking on them, or by moving them.

The intuition behind the drag-and-drop proof tactic is, we hope, simple. It builds on the distinction
between the roles red and blue items play in the proof:

• the red conclusion A demands evidence that the proposition A is true;

• on the other hand, a blue hypothesis B provides evidence that B is true in the considered state.

This materializes in the most basic DnD proof construction action. Given a goal whose conclusion is a
proposition A, if this goal also yields a hypothesis A, then one can drag one A and drop it onto the other,
which solves the goal.

We hope that the intuition of this proof construction step is reasonably clear: grab the evidence (the
hypothesis) and bring it where it is needed (the conclusion); or conversely, grab the proposition to be
proved, and bring it to some evidence. Much of the work is about how to generalize this idea to more
complex situations while trying to stick to an intuitive behavior. From a proof-theoretical point of view,
this can thus be understood as an attempt to provide a generalized axiom rule and appears related to deep
inference [2]; understanding this helped to design the precise behavior of the tactic.

Note that some actions will not solve the goal but transform the conclusion while others will combine
two hypotheses in order to create a new one. In the case illustrated in figure 1 for instance, there are two
possible actions:

• One can drop the upper hypothesis on the conclusion; this transforms the conclusion to Human(Socrates)
(and the goal can then be solved by using the other hypothesis).

• If one drops the hypothesis Human(Socrates) on the other one, this gives birth to a new fact/hypothesis
Mortal(Socrates).
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Abstract

We present a method to construct “native” type systems for a broad class of languages,
in which types are built from term constructors by predicate logic and dependent types.
Many languages can be modelled as structured λ-theories, and the internal language of their
presheaf toposes provides total specification the structure and behavior of programs. The
construction is functorial, thereby providing a shared framework of higher-order reasoning
for most existing programming languages. The full paper is on arXiv [6].

Introduction

Type theory is growing as a guiding philosophy in the design of programming languages, but
in practice type systems are mostly heterogeneous, and there are not standard ways to reason
across languages. We construct from a typed λ-calculus a native type system which provides
total specification of the structure and behavior of terms.

Categorical logic constructions can be composed to generate expressive type systems:

λtheory topos type system
P L

The first is the presheaf construction P [2, Ch. 8]; it preserves product, equality, and function
types. The second is the language of a topos L [3, Ch. 11]. The composite is 2-functorial, so
that translations between languages induce translations between type systems.

We aim to implement native type theory as a tool which inputs the formal semantics of
a language and outputs a type system, which can then be used to condition codebases. The
semantics of languages such as JavaScript, C, Java, Python, Haskell, LLVM and Solidity [1]
can be represented as λ-theories with rewrites. Properly integrated, native type systems could
introduce expressive type theory directly into everyday programming.

λ-Theories

Typed λ-calculus is the internal language of cartesian closed categories [4]; these model lan-
guages with product and function types. A useful addition is equality types: we define a λ-
theory with equality to be a cartesian closed category with pullbacks. Our leading example
is a concurrent language called the ρ-calculus, or reflective higher-order π-calculus [5].

0 : 1→ P −|− : P× P→ P

@ : P→ N out : N× P→ P

∗ : N→ P in : N× [N, P]→ P

s, t : E→ P comm : N× P× [N, P]→ E

s(comm(n, q, λx.p)) = out(n, q)|in(n, λx.p)
t(comm(n, q, λx.p)) = p[@q/x]
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The Logic of a Presheaf Topos

A λ-theory embeds into a presheaf topos by the Yoneda embedding, and the internal language
of the topos constitutes its native type system.

A presheaf is a context-indexed set of data on the sorts of a theory. The canonical example
is a representable presheaf, of the form T(−, S), which indexes all terms of sort S. A predicate
ϕ : T(−, S)→ Prop is a shape of abstract syntax tree in T, or a type of program structure.

A higher-order dependent type theory is a pair of fibrations p : Pred→ E and q : Type→ E

connected by a fibered reflection i a c : Pred � Type [3, Ch.11]. These form a 2-category
HDTΣ, with morphisms of fibered adjunctions.

Theorem. There is a 2-functor L : Topos → HDTΣ which sends E to its predicate and
codomain fibrations, connected by image and comprehension. This sends a topos to its internal
language, given by predicate logic and dependent type theory.

All together, native type theory is a 2-functor

λThyop
= Topos HDTΣ.P L

The construction freely generates a highly expressive type system for the language of T. The
types are native in that they are built from term constructors and dependent type constructors.
This enables higher-order reasoning which is intrinsic to the language.

Native Type Theory

The native type system of a theory T is LP(T ), the higher-order dependent type system of
P(T). Types x:A ` B(x) : Type are indexed presheaves f : B → A.

The basic types are T(−, T) ` T(−, f) : Type for each operation f : S → T. The main type
constructors are dependent sum and dependent product, which generalize quantification and
enable higher-order reasoning in the language of T.

Γ ` A : Type Γ, x:A ` B : Type
ΣF

Γ ` Σx:A.B : Type

Γ ` A : Type Γ, x:A ` B : Type
ΠF

Γ ` Πx:A.B : Type

The system has inductive and coinductive types, equality and quotient types, and more.
Most importantly, by adding rules for functoriality, we can reason across translations.

Applications

As a small example of the expressiveness of native types, let T be the theory of the ρ-calculus.
The graph of rewrites over processes is a type T(−, P2) ` g := T(−, 〈s, t〉) : Type.

g(S)(p1, p2) = {e | S ` e : p1 ; p2}

This type is the space of all computations in the ρ-calculus. The native type system can filter to
subspaces: below is the type of communications occuring on names in α, sending data in ϕ, and
for F : [N,Prop]→ [P,Prop] continuing in contexts λx.c : [N, P] such that χ(n)⇒ F (χ)(c[n/x]).

Σe:comm(α,ϕ, χ.F ).g

We can then construct modalities relative to these subspaces, as well as behavioral equivalences.
By including a graph of rewrites, native type theory can reason about not only the structure
but also the behavior of terms, and explore their interconnection.
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Abstract

We introduce a variant of extensional type theory where reflection is restricted to shape-irrelevant
subterms. This extends the notion of definitional irrelevance while retaining nice properties like strong
normalisation and non-confusion. With this, we propose a solution to dealingwith the infamous indices
in dependent type theory, but also some natural meta-theory for the use of automation like SMT-solvers
to produce (shape-)irrelevant proofs in the style of F*.

Γ ` p : u =A v

Γ ` u ≡ v : A

Extensional type theories are dependent type theories extended with the so-called re-
flection of equality rule. It states that whenever two terms u and v are provably (or
propositionally) equal, then they are convertible (or defintionally equal). This can be
very convenient when reasoning or programming because equalities do not ‘get in the
way’; the type system ensures that they must have been checked, but they do not ap-
pear explicitly in terms. As such, several systems like F* [10], Andromeda 1 [4] and
NuPRL [6] implement variants of extensional type theories.

These advantages come at a cost however: in presence of the reflection rule, type checking becomes
undecidable. Despite its apparent convenience it is thus absent from proof assistants like Coq [11] and
Agda [8] which prefer a more controlled notion of conversion and typing. Decidability is not the only
aspect that is relevant here: another one is the notion of confusion, or rather lack thereof. In presence
of the reflection rule, any two terms are convertible in an inconsistent context. For instance a product
type can be confused with the type of natural numbers. We thus lose the good properties expected of a
programming language as data is no longer necessarily of the expected form.

Irrelevance. From these observations, it seems natural to have reflection only happen in ways that
do not affect the data representation. This would point to a use of reflection limited to computationally
irrelevant arguments [9]. Abel and Scherer [1] already developed a type theory with irrelevant arguments
that are ignored by conversion. The theory is extended with irrelevant binders (written ÷ rather than
the usual colon) and the fact that such arguments are ignored for conversion. More recently [7] have
introduced a proof-irrelevant sort in Coq and Agda which contains propositions, the proofs of which are
always convertible. Of course, reflection on such irrelevant terms does not really make sense because
they are all already identified. Thus, we propose to have reflection for shape-irrelevant subterms.

Shape-irrelevance. An argument to a function is shape-irrelevant when it does not affect its shape. A
prototypical example of a non-shape-irrelevant argument is a natural number used to produce an n-ary
dependent product type, another one is the size argument in sized-types [2]. For our purposes, we will
consider the natural number index n in the type of vectors vecA n, as well as the predicate P in subset
type {x : A | P} to be shape-irrelevant. vecA n describes the type of lists of typeAwhose length is equal
to n. An inhabitant of vecA n and one of vecA m are both represented as lists but might have different
lengths. Identifying vecA n and vecA m would not make much sense (otherwise this type would merely
be that of listA). What we propose however is to consider the index up to reflection.

Shape-irrelevant reflection type theory (SIRTT) We define and formalise [13] in Coq a type theory
we call SIRTT which features relevance annotations (r, s or i) on binders, an equality type, a type of
vectors, as well as refinement types. Relevance levels (written ℓwhen abstract) r, s and i stand respectively
for ‘relevant’, ‘shape-irrelevant’ and ‘irrelevant’, and also annotate typing and conversion with the idea
that relevant data can be used in place of shape-irrelevant data, and shape-irrelevant data in place of
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irrelevant data. Furthermore, when stating Γ ` t :ℓ A, while t lives in Γ as usual, the type A lives in a
modified version of Γ where all irrelevant binders have been replaced by shape-irrelevant ones, written
Γ▲. This property shares some similary with quantitative type theory [3]. The crucial point of having
this annotation is to impact conversion. The most interesting conversion rules are below.

Γ ` u ≡i v

Γ ` p :i u =A v

Γ ` u ≡s v

Γ ` A ≡r B Γ ` n ≡s m

Γ ` vecA n ≡r vecB m

Γ ` A ≡r B Γ, x :r A ` P ≡s Q

Γ ` {x : A | P} ≡r {x : B | Q}
Γ ` f ≡r g Γ ` u ≡ℓ v

Γ ` f @ℓ u ≡r g @ℓ v

The first rule states that irrelevant subterms are always convertible, the second corresponds to shape-
irrelevant reflection, while the others show how the different layers interact via congurence rules of
vector types, refinement types and applications (at arbitrary relevance level ℓ) respectively.

Γ▲ ` A Γ ` p :i ⊥
Γ ` exfalsoA p :r A

For the language to be interesting we need not only a way to go from rel-
evant to irrelevant but also a restricted arrow in the other direction. This is
similar to how singleton elimination is necessary for the universe of propo-
sition of Coq to be used in a relevant context. We bridge this gap with the
empty type ⊥ or more precisely with its eliminator exfalso which expects an
irrelevant proof of ⊥ to relevantly inhabit any type.

This language features computation with for instance a β-reduction rule
for relevant application, but crucially, it doesn’t feature such reduction1 for (shape-)irrelevant applications.
To account for the fact that a redex might be hidden under irrelevant redexes, we introduce a function
which consumes these redexes without applying the substitution (and thus is trivially terminating) which
we write in a relational way as t ▷ u | σ to mean that t reveals relevant term u and irrelevant substitution
σ. The idea is that we do not need to apply the substitution σ to compute since its content are anyway
computationally irrelevant.

t ▷ v | σ
(λ(x :i A). t) @i u ▷ v|σ, x 7→ u

t ▷ λ(x :r A). b | σ
t @r u⇝ bσ[x 7→ u]

Thanks to this, we are able to show that one-step reduction (⇝) is preserved by an erasure program
transformation, which constitutes the main contribution.

Erasure of SIRTT to MLTT We formalise a notion of MLTT with lists, natural numbers and equality
and an axiom for the empty type (⊥). Even if this theory is trivially inconsistent, it still enjoys properties
like strong normalisation and non-confusion (which we do not formalise) which can be lifted back to
SIRTT thanks to an erasure translation (which we will write with square brackets in the style of [5]).

The idea of erasure is to simply remove all (shape-)irrelevant subterms, for instance erasing vectors
to lists: [vecA n] := list[A]. The need for axiom ⊥ comes when erasing exfalso for which the proof
is irrelevant and is thus erased and replaced by the use of an axiom. It is similar in a sense to how
extraction/compilation would replace static checks by dynamic failures.

Theorem 1. Erasure from SIRTT to MLTT preserves reduction, conversion and typing:

1. If u⇝ v then [u]⇝ [v].

2. If Γ ` u ≡r v then [u] ≡ [v].

3. If Γ ` t :r A then JΓK ` [t] : JAK.
Corollary 2. Assuming MLTT enjoys strong normalisation and non-confusion, so does SIRTT.

From this, we cannot obtain consistency of SIRTT. As future work, we plan to explore another translation
from SIRTT to MLTT but without ⊥, in the style of [12]. We believe this could take the form of a type-
checker for SIRTT returning a set of equalities to be proven and a term in MLTT using transports.

1It still features a conversion rule for those.
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